热力发电厂课后习题答案.docx

上传人:b****3 文档编号:13214376 上传时间:2023-06-12 格式:DOCX 页数:14 大小:114.44KB
下载 相关 举报
热力发电厂课后习题答案.docx_第1页
第1页 / 共14页
热力发电厂课后习题答案.docx_第2页
第2页 / 共14页
热力发电厂课后习题答案.docx_第3页
第3页 / 共14页
热力发电厂课后习题答案.docx_第4页
第4页 / 共14页
热力发电厂课后习题答案.docx_第5页
第5页 / 共14页
热力发电厂课后习题答案.docx_第6页
第6页 / 共14页
热力发电厂课后习题答案.docx_第7页
第7页 / 共14页
热力发电厂课后习题答案.docx_第8页
第8页 / 共14页
热力发电厂课后习题答案.docx_第9页
第9页 / 共14页
热力发电厂课后习题答案.docx_第10页
第10页 / 共14页
热力发电厂课后习题答案.docx_第11页
第11页 / 共14页
热力发电厂课后习题答案.docx_第12页
第12页 / 共14页
热力发电厂课后习题答案.docx_第13页
第13页 / 共14页
热力发电厂课后习题答案.docx_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

热力发电厂课后习题答案.docx

《热力发电厂课后习题答案.docx》由会员分享,可在线阅读,更多相关《热力发电厂课后习题答案.docx(14页珍藏版)》请在冰点文库上搜索。

热力发电厂课后习题答案.docx

热力发电厂课后习题答案

热力发电厂课后习题答案

热力发电厂课后习题答案

第一章热力发电厂动力循环及其热经济性

1、发电厂在完成能量的转换过程中,存在哪些热损失?

其中哪一项损失最大?

为什么?

各项热损失和效率之间有什么关系?

能量转换:

化学能—热能—机械能—电能(煤)锅炉汽轮机发电机

热损失:

1)锅炉热损失,包括排烟损失、排污热损失、散热损失、未完全燃烧热损失等。

2)管道热损失。

3)汽轮机冷源损失:

凝汽器中汽轮机排汽的气化潜热损失;膨胀过程中的进气节流、排气和内部损失。

4)汽轮机机械损失。

5)发电机能量损失。

最大:

汽轮机冷源热损失中的凝汽器中的热损失最大。

原因:

各项热损失和效率之间的关系:

效率=(1-损失能量/输入总能量)×100%。

2、发电厂的总效率有哪两种计算方法?

各在什么情况下应用?

1)热量法和熵方法(或火用方法或做功能力法)

2)热量法以热力学第一定律为基础,从燃料化学能在数量上被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定量分析。

熵方法以热力学第二定律为基础,从燃料化学能的做工能力被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定性分析。

3、热力发电厂中,主要有哪些不可逆损失?

怎样才能减少这些过程中的不可逆损失性以提高发电厂热经济性?

存在温差的换热过程,工质节流过程,工质膨胀或压缩过程三种典型的不可逆过程。

主要不可逆损失有

1)锅炉内有温差换热引起的不可逆损失;可通过炉内打礁、吹灰等措施减少热阻减少不可逆性。

2)锅炉散热引起的不可逆损失;可通过保温等措施减少不可逆性。

3)主蒸汽管道中的散热和节流引起的不可逆性;可通过保温、减少节流部件等方式来减少不可逆性。

4)汽轮机中不可逆膨胀引起的不可逆损失;可通过优化汽轮机结构来减少不可逆性。

5)凝汽器有温差的换热引起的不可逆损失;可通过清洗凝汽器减少热阻以减少不可逆性。

4、发电厂有哪些主要的热经济性指标?

它们的关系是什么?

主要热经济性指标有:

能耗量(汽耗量,热耗量,煤耗量)和能耗率(汽耗率,热耗率,煤耗率)以及效率。

能耗率是汽轮发电机生产1kW.h的电能所需要的能耗量。

(公式)

5、给出汽耗率的定义及其与电功率Pe、单位进气做功wi以及单位进气热耗q0相互关系的表达式,说明汽耗率不能独立用作热经济性指标的原因是什么?

汽耗率:

汽轮发电机组每生产1kW.h的电量所需要的蒸汽量,成为汽轮发电机组

的汽耗率。

用d表示。

a可以将水加热到该级加热器蒸汽压力下所对应的饱和水温度,充分利用了加热蒸汽的能位,在加热器内实现了热量传递,完成了提高水温的过程。

b汽水直接接触,没有金属受热面,因而加热器结构简单,金属耗量少,造价低,便于汇集不同参数的汽水流量。

c可以兼作除氧设备,避免高温金属受热面氧腐蚀。

d系统复杂,运行安全性、可靠性低,系统投资大,采用重力式回热系统可以解决上述问题,且热经济性提高

2.为什么现代发电厂一般都采用以表面式加热器为主的回热系统?

表面式加热器组成的回热系统简单,运行安全可靠,布置方便,系统投资和土建费用少。

混合式加热器要求抽汽压力与给水压力相匹配,要求较高,对高压加热器来说更难以实现,故一般都采用表面式加热器为主的回热系统。

3.什么是表面加热器的端差?

表面式加热器的端差对热力系统的经济性有什么影响?

加热器压力下饱和水温度与出口水温度之差。

端差越小,热经济性越好。

一方面如果加热器出口水温不变,端差减小意味着疏水温度不需要原来那么高,回热抽汽压力可以降低一些,回热抽汽做功比Xr增加,热经济性变好;另一方面如果加热蒸汽压力不变,疏水温度不变,端差减小则出口水温增加,其结果是减少了压力较高的回热蒸汽抽汽做功比而增加了压力较低的回热蒸汽做功比,热经济性得到改善。

4.为什么现代大型机组的回热系统中较多地采用表面式卧式加热器?

卧式加热器换热面管横向布置,在相同凝结放热条件下,其凝结水膜较竖管薄,单管放热系数高;同时在筒体内易于布置蒸汽冷却段和疏水冷却段,在低负荷时可借助于布置的高程差来克服自流压差小的问题,经济性高于立式。

5.回热抽汽管道压降是如何产生的?

它的大小对回热系统的经济性有什么影响?

抽汽管道压力降∆pj是指汽轮机抽汽出口压力pj和j级回热加热器内汽侧压力p'j之差。

加热蒸汽流过管道,由于管壁的摩擦阻力必然要产生压力降低。

若加热器端差不变,抽汽压降∆pj加大,则p'j、tdj随之减小,引起加热器出口水温twj降低,导致增加压力较高的抽汽量,减少本级抽汽量,使整机的抽汽做功比Xr减小,热经济性下降。

6.大型机组回热系统为什么要采用蒸汽冷却器和疏水冷却器?

在T-S图上画出其做功能力损失的变化部位。

高参数大容量机组提高了中低压缸部分回热抽汽的过热度,使得各级回热加热器内汽水换热温差增大,㶲损增加,即不可逆损失增大,从而削弱了回热的效果。

让过热度较大的回热抽汽先经过一个冷却器或冷却段降低蒸汽温度后再进入回热加热器,这样不但减少了回热加热器内汽水换热的不可逆损失,而且还可以不同程度地提高加热器出口水温,减小加热器端差,改善回热系统的热经济性。

减少对低压抽汽的排挤,同时本级也因更多地利用了疏水热能而产生高压抽汽减少、低压抽汽增加的效果,减少疏水逐级自流带来的负面效果。

7.表面式加热器的疏水方式有哪几种?

使用回热抽汽做功比来分析不同疏水方式对热经济性的影响。

疏水逐级自流式:

利用相邻表面式加热器汽侧压差,将压力较高的疏水自流到压力较低的加热器中,逐级自流直至与主水流汇合。

疏水泵式:

利用水泵提供的压头将疏水送至该级加热器的出口水流中。

疏水逐级自流由于j级疏水热量进入j+1级加热器,使压力较高的j-1级加热器进口水温比疏水泵方式低,水在其中的焓升∆hwj-1及相应的回热抽汽量Dj-1增加。

而在压力较低的j+1级加热器由于疏水热量的进入,排挤了部分低压回热抽汽,Dj+1减少。

这种疏水逐级自流方式造成高压抽汽量增加、低压抽汽量减少,从而使回热抽汽做功比减小,热经济性降低。

而疏水泵方式完全避免了对j+1级低压抽汽的排挤,同时提高了j-1级加热器的水温,使j-1级抽汽略有减少,故热经济性高。

8.锅炉给水为什么要除氧?

发电厂主要采用哪种方式除氧?

其原理是什么?

氧气溶解度随温度升高而下降,温度愈高就愈容易直接和金属发生化学反应,是金属表面遭到腐蚀。

氧气还会使传热恶化,热阻增加,降低机组的热经济性。

发电厂主要采用热力除氧法。

热力除氧的原理是亨利定律和道尔顿定律。

要除去水中溶解的某种气体,只须将水面上该气体的分压力降为零即可,在不平衡压差的作用下,该气体就会从水中完全除掉。

对除氧器中的水进行定压加热,随温度的上升,水蒸发不断加深,水面上水蒸气的分压力逐渐增大,溶于水中的氧气的分压力逐渐减小,当水被加热到除氧器工作压力下的饱和温度时,水蒸气的分压力接近水面上气体的总压力时,其他气体的分压力趋于零,水中也就不含其他气体。

9.现代大型电厂除氧器的布置方式有哪几种?

大型机组采用哪种方式较多?

为什么?

按除氧器的布置方式分为立式和卧式除氧器。

大型机组采用卧式除氧器较多。

卧式除氧塔在长度方向上可布置较多的喷嘴,有效地避免相邻喷嘴水雾化后相互干涉,完成初期除氧阶段,除氧效果获得保证。

同时也可以布置多个排气口,利于气体及时逸出,以免返氧,影响除氧效果。

10.除氧器的运行方式有哪几种?

不同的运行方式对除氧器汽源连接方式有什么要求?

定压和滑压两种运行方式。

定压运行除氧器是保持除氧器工作压力为一定值,为此需在进气管上安装压力调节阀,将压力较高的回热抽汽降低至定值。

单独连接定压除氧器方式在抽汽管道上设置有压力调节阀,当负荷降低到该级抽汽压力满足不了除氧器运行压力要求时,有可以切换至高一级抽汽并相应关闭原级抽汽的装置。

前置连接定压除氧器方式是在除氧器出水口前方设置一高压加热器并与除氧器共用同一级回热抽汽,组成一级加热。

滑压运行除氧器是指在滑压范围内运行时其压力随主机负荷与抽汽压力的变动而变化,抽气管不设压力调节阀,只有一止回阀防止蒸汽倒流入汽轮机。

11.什么是除氧器的滑压运行?

为确保滑压运行中给水泵不发生汽蚀,有哪些预防措施?

除氧器滑压运行指在滑压范围内运行时其压力随主机负荷与抽汽压力的变动而变动,启动时除氧器保持最低恒定压力,抽汽管上只有一止回阀防止蒸汽倒流入汽轮机,没有压力调节阀引起额外的节流损失。

为防止给水泵汽蚀,可以采取以下措施:

提高除氧器安装高度,增大除氧器防止水泵汽蚀的富裕压头;采用低转速的前置泵,因它的必须汽蚀余量较高速泵小很多,除氧器亦可布置在较低的高度;降低泵吸入管道的压降;提高水泵吸入管内流速,加大给水泵流量,以缩短滞后时间;在给水泵入口注入冷水,以降低进入给水泵的水温;适当增加除氧器给水箱储水量;装设在滞后时间内能快速投入的备用汽源,阻止除氧器压力的下降。

12.机组原则性热力系统计算的目的是什么?

常规热力计算的原理、方法是什么?

回热加热器的出水焓是如何确定的?

计算目的是:

确定汽轮机组在某一工况下的热经济性指标和各部分汽水流量,根据以上计算结果选择有关的辅助设备和汽水管道,确定某些工况下汽轮机的功率和新汽耗量,新机组本体热力系统定型设计。

原理:

加热器热平衡式

吸热量=放热量×或流入热量=流出热量通过加热器热平衡式可以求出抽汽量汽轮机物质平衡式

Dc=D0h0-∑Dj(求和由j=1至z)

汽轮机功率方程式

3600Pe=Wiηmηg=D0ωiηmηg

Wi=D0h0+Drhqrh-∑Djhj(求和由j=1至z)-Dchc

ωi=h0+arhqrh-∑ajhj(求和由j=1至z)-achc

ηm机械效率;ηg发电机效率;Drh再热蒸汽量;qrh再热热量;D0新汽耗量。

方法:

常规计算法若回热系统是由z级回热抽汽所组成,对于每一级抽汽相连的加热器分别列出热平衡式,再加上一个求凝汽量的物质平衡式或功率方程组成z+1个线性方程组,最终可以求出z个抽汽量和一个新汽量。

常规计算法有可分为串联法和并联法。

串联法对凝汽式机组采用由高至低的计算次序,从抽汽压力最高的的加热器算起,依次逐个算至抽汽压力最低的加热器。

并联法对z+1个方程组联立求解,一次求解出z+1个未知数。

回热加热器出水焓由加热器出口水的温度和水侧压力根据H-S表查出。

第三章热电厂的热经济性及其供热系统

1.热负荷有哪几种类型?

有何特点?

——季节性热负荷:

用热量主要与气候条件有关,包括采暖设计热负荷、通风设计热负荷、空调设计热负荷。

特点:

取决于室外温度,年变化大,日变化小

——非季节性热负荷:

用热量与室外气温无关,包括生活热水设计热负荷、生产工艺设计热负荷。

特点:

年变化小,日变化大

2.热网载热质有哪几种?

各有什么优缺点?

蒸汽和热水。

蒸汽供热适应性强,供热速度快,输送载热质的电能消耗少,静压差小,运行稳定;热用户用热设备投资小,但供热距离近,热化发电量小,供热蒸汽的凝结水回收率低,热经济性低,效率低,供热管网寿命短,维修工作量大。

热水供热距离远,热化发电量大,供热蒸汽凝结水回收率高,效率高,蓄热能力强,管网寿命长,维修工作量小。

热适应性一般,供热速度慢,静压差大,对水力工况要求严格,输送载热质电能消耗大,热用户用热设备投资大。

8.热化发电率ω增大是否一定节省燃料?

当供热机组的汽水参数一定时,热功转换过程的技术完备程度越高,热化发电量越高,即对外供热量相同时,热化发电量越大,从而可以减少本电厂或电力系统的凝气发电量,节省更多的燃料。

热化发电率只能用来比较供热参数相同的供热式机组的热经济性,不能比较供热参数不同的热电厂的热经济性,也不能用以比较热电厂和凝汽式电厂的热经济性。

所以热化发电率增大不一定节省燃料。

9.热电联产发电是否一定节煤?

只有实际的热化发电比大于临界热化发电比时,热电联产发电才节煤。

12.说明热化系数的含义及热化系数最优值的含义。

为什么说热化系数值αtp<1才是经济?

小时热化系数αtp,是指供热式机组的小时最大热化供热量Q(上标max下标h,t)与小时最大热负荷Q(上标max下标h)之比。

αtp=Q(上标max下标h,t)/Q(上标max下标h)

最优热化系数是以热电联产系统热经济性最佳为目标。

理论上的最佳热化系数的大小,取决于热电厂全年热负荷持续时间图的形状,其图形越成剑峰形,则热化系数的最佳值越小,其次取决于代替凝汽式发电厂和热电厂凝气流发电两者之间热经济性的差别,其差别越大,热化系数最佳值就越小.

热化系数是以热电联产为基础,把热电联产与热电分产按一定比例组成的热电联产能量供应系统综合经济性的宏观控制指标;它表示在热电联产能量供应系统中热化供热量(即热电联产供热量)所占比例。

其余热量的百分值由系统中尖峰锅炉或由电厂的锅炉富裕量供应。

它可简单表述为:

热电厂供热机组同一抽汽参数的最大抽汽供热量Qht(m)与供热系统最大热负荷Qm之比.就其含意来说,它不仅反映了联产能量供应系统中联产供热与分产供热的比例及其经济性,也反映了分产供电经济性。

当节约煤量对热化系数的导数为零时的αtp值称为理论上热化系数最优值。

它表

明此时燃料节省达到最大值。

若αtp=1,Qht(m)=Qm。

即在采暖最冷期的短时间内,因热负荷较大,此时热经济性较好。

但在整个采暖期间大部分时间内,因热负荷减少,热化发电量Wh下降,凝汽发电量Wc增大,因热电厂发Wc的发电煤耗要高于电网代替凝汽式电站的发电煤耗b,这部分发电反而多耗煤,热经济性降低;而在非采暖期,采暖热负荷为零,或仅有小量热水负荷或为零;此时几乎为凝汽发电,其热经济性大为降低,所以对于热电联产供能系统的αtp<1才是经济的。

第四章发电厂的热力系统

1.原则性热力系统概念、特点、作用、组成

1)概念。

将主要热力设备按工质热力循环的顺序连接的系统

2)特点。

它是按规定的符号将主要热力设备按某种热力循环的顺序连接的线图,它只表示工质流经时状态参数起了变化的各种主要热力设备,故同类型同参数的设备在图中只表示一台,备用设备及配件在图中不表示(额定工况所必须的附件除外,如定压运行除氧器进汽管的调节阀)

3)作用。

它表明了电厂热力循环的工质在能量转换及利用过程中的基本特征和变化规律,同时也反映了发电厂的技术完善程度和热经济性高低,合理的确定发电厂的原则性热力系统是发电厂设计工作中一项主要任务,对系统的理解,运用和改进,则是对发电厂热力工作者的一项基本要求

4)组成。

锅炉汽轮机凝汽器设备的联接系统,给水回热加热系统,除氧器联接系统,补充水引入系统,锅炉排污及其他废热回收利用系统,热电厂的对外供热系统

2.全面热力系统概念,与原则性热力系统画法上的根本区别,作用

1)概念。

它是在原则性热力系统的基础上充分考虑到发电厂生产所必须的连续性安全性可靠性灵活性后所组成的实际热力系统

2)区别。

全面热力系统应画出实际所有的(运行和备用的)设备、管线、阀门

3)作用。

①对发电厂设计而言,会影响到投资和钢材的耗量。

②对施工而言,会影响施工工作量和施工周期。

③对运行而言,会影响热力系统运行调度的灵活性可靠性经济性。

④对检修而言,会影响各种切换的可能性及备用设备投入的可能性

3.汽轮机,锅炉机组选择的原则

1)汽轮机

①汽轮机容量。

应根据系统规划容量,负荷增长速度和电网结构等因素进行选择。

最大机组容量不宜超过系统总容量的10%,对于负荷增长较快的形成中的电力系统,可根据具体情况并经技术经济论证后选用较大容量的机组。

对于已形成的较大容量的电力系统,应选用高效率的600、1000MW机组

②汽轮机参数。

我国电网已符合采用高效率大容量中间再热式汽轮机组的条件

③汽轮机台数。

不宜过多,一般4~6台,机组容量等级不超过2种为好,且同容量机、炉宜采用同一制造厂的同一类型或改进型,其配套设备的类型也宜一致。

对兼有热力负荷的地区,经经济技术比较证明合理后,应采用供热机组,对于有稳定可靠的热负荷,可考虑选择背压式机组

2)锅炉机组

①锅炉参数。

大容量机组锅炉过热器出口额定蒸汽压力通常选取汽轮机额定进气压力的105%,过热器出口额定蒸汽温度选取比汽轮机额定进气温度高3℃,冷段再热蒸汽管道、再热器,热段再热蒸汽管道额定工况下的压力降宜分别取汽轮机额定工况下高压缸排气压力的1.2~2,5,3.5~3%,再热器出口额定蒸汽温度比汽轮机中压缸额定进气温度高3℃为宜,主要是为减少主蒸汽和在热蒸汽的压降和散热损失,提高循环热效率

②锅炉类型。

大型火电厂锅炉几乎都采用煤粉炉,其效率高,可达90~93%,容量不受限制。

锅炉类型的选择还要考虑水箱循环方式、水循环方式、蒸汽处参数,通常亚临界参数以下多采用自然循环气泡炉,循环安全可靠,热经济性高。

亚临界参数采用自然循环或强制循环,后者能适应调峰情况下承担低负荷时水循环的安全,超临界参数只能采用强制循环直流炉

③锅炉容量与台数。

凝汽式发电厂一般一机配一炉,不设备用锅炉,锅炉的最大连续蒸发量按汽轮机最大进汽量工况相匹配。

对装有供热式机组的发电厂,选择锅炉容量与台数时,应核算在最小热负荷工况下,汽轮机的进气量不得低于锅炉最小稳定燃烧的负荷以保证锅炉的安全稳定运行

6.单级锅炉连续排污扩容器,理论上最佳压力如何确定?

蒸汽回收率αf=Df/Dbl=(hbl’ηf-hf’)/(hf”-hf’)

式中分子是1KG排污水在扩容器内的放热量,它决定于汽包压力与扩容器的压力差,分母是扩容器工作压力下1KG排污水的汽化潜热,在压力变化范围不大时,它可以看做常数。

因此,当锅炉压力一定时,扩容器的压力越低,回收工质越多,即获得的扩容蒸汽量是靠排污水的能位贬值来实现的,能位贬值越厉害,得到的扩容蒸汽量越多,此时,蒸汽的质量越差,因此,在排污水的利用上,可通过对回收工质的数量与质量方面的要求来选择扩容器的压力,次值就是最佳值

7.发电厂原则性热力系统计算与汽轮机组系统计算有哪些异同?

范围不同、内容也有别。

前者以扩展至全厂范围,内容比后者多,但还是以回热系统为基础进行的,因此,应首先计算有关的辅助系统,求出影响回热系统的有关函数关系后,再求回热系统,即可进一步算出电厂的各项热经济指标

11.大型中间再热机组的主蒸汽管道采用什么系统?

为什么?

单元制系统;

每台锅炉与相对应的汽轮机组成一个独立单元,各单元间无母管横向连接,单元内各用汽设备的新蒸汽支管均引自机炉之间的主蒸汽管道

其优点是系统简单,管道短,阀门少,故能节省大量高级耐热合金钢。

事故仅限于本单元内,全厂安全可靠性高。

控制系统按单元设计制造,运行操作少,易于实现集中控制。

工质压力损失小,散热少,热经济性高。

维护工作量少,费用低。

无母管,便于布置,主厂房土建费用少。

因此,对参数高,要求大口径高级耐热合金钢的机组,且主蒸汽管道系统投资占有较大比例者,应首先考虑单元制系统

17.设计回热全面性热力系统时,对回热抽气管道应考虑哪些措施确保各工况下机组的安全?

为什么?

在抽气官道上设置抽汽隔离阀和止回阀;

为了防止汽轮机甩负荷或跳闸时,抽汽管道中聚集的蒸汽倒流入汽轮机本体,致使汽轮机发生意外的超速。

当汽轮机低负荷运行时,或某加热器水位太高、加热器水管泄露破裂、疏水管道不畅时,水可能倒流入汽轮机本体,这些情况是很危险的,不允许的。

同时为了使某一加热器在出现事故时需隔离而不影响汽轮机的运行,需要在抽气官道上设置抽汽隔离阀和止回阀。

18.回热加热器的水侧旁路类型,优缺点。

单个加热器的小旁路、两个加热器以上的大旁路;

前者运行灵活,事故波及面小,对热经济性的影响也小,但系统复杂,连接管路及管制件多,投资大。

后者刚好相反,系统简单,事故波及面大,对热经济性的影响大,随着高压加热器制造质量的提高,大旁路也应用较多

19.回热加热器及凝结水泵入口为何设置抽空气管路,给水泵入口为何不要?

各加热器汽侧与加热蒸汽管道相连,运行中蒸汽不断凝结成疏水,而蒸汽中含有部分不凝结性气体则会在筒体中停留,影响加热器的传热系数值,为此,在加热器汽侧设置抽空气管路以排除不凝结性气体。

凝结水泵与疏水泵入口也应设置抽空气管路,分别引入凝汽器和相应加热器的抽空气管路,不断抽出漏入泵内的空气以维持泵的正常工作。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2