离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx

上传人:b****2 文档编号:1353935 上传时间:2023-04-30 格式:DOCX 页数:10 大小:200.58KB
下载 相关 举报
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第1页
第1页 / 共10页
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第2页
第2页 / 共10页
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第3页
第3页 / 共10页
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第4页
第4页 / 共10页
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第5页
第5页 / 共10页
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第6页
第6页 / 共10页
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第7页
第7页 / 共10页
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第8页
第8页 / 共10页
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第9页
第9页 / 共10页
离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx

《离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx》由会员分享,可在线阅读,更多相关《离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx(10页珍藏版)》请在冰点文库上搜索。

离子液体基质固相分散超声雾化固相萃取结合高效液相色谱法检测人参中三嗪类除草剂精选文档Word文档格式.docx

Aglient1200高效液相色谱仪(美国安捷伦公司),配

Aglient1200工作站、紫外检测器(VWD。

超声雾化提取装置

(图1)由超声雾化加湿器(北京亚都科技XX公司)改造而成;

超声功率最大为35W频率为1.7MHz;

超声雾化提取瓶内径6cm,底端开口用PVC薄膜密封,顶端开口用于填加样品、提取液及安装固相萃取装置。

莠灭净(Ametryn)、阿特拉津(Atrazine)、敌草净

Desmetryn)、扑灭津(Propazine)和西玛津(Simazine)5种三嗪类除草剂标准品(纯度>

99%,Dr.Ehrenshtofer公司);

色谱级甲醇和乙腈(Sigmaalrich公司);

C18(200〜300目,

绿百草科技发展XX公司);

硅胶(200〜300目青岛海洋化

工厂);

中性氧化铝(200〜300目)和硅藻土(200〜300目,

上海国药集团);

固相萃取小柱及筛板(天津博纳艾杰尔科技{[C4MIM][PF6]}、1甲基3己基咪唑六氟磷酸盐{[C6MIM][PF6]}、1甲基3辛基咪唑六氟磷酸盐{[C8MIM][PF6]}(纯度均大于98.0%,上海成捷化学XX公司)。

其它试剂均购自北京化学试剂厂。

2.2仪器条件

HPLC色谱分离条件:

AglientZorbaxSBC18色谱柱(250mm<

4.6mm5卩m;

柱温30C;

流动相为乙腈(人)水(B);

流速0.8mL/min;

梯度洗脱:

0〜8min,35%-50%A;

8〜15min,50%A15〜20min,50%〜55%A检测波长228nm;

进样量20

L。

2.3实验方法

将300mg人参粉末、200卩L去离子水和150mg表面固载有[C6MIM][PF6]的硅胶一同研磨5min,混合物转移至超声雾化

提取瓶中,加入20.0mL去离子水作为提取剂。

将填装有300mg

已活化的C18固定相的固相萃取小柱安装到提取瓶上,连接真空泵。

开启真空泵,打开提取器开关,调节功率至35VV提取10min;

取下固相萃取小柱,加入10mL去离子水冲洗,以真空泵抽干,用6.0mL乙腈洗脱,收集洗脱液,40C减压蒸干;

加入200卩L甲醇复溶,过0.22Um滤膜,进样高效液相色谱仪分析。

2.4超声雾化固相萃取(UANESP)E

将300mg加标样品粉末和20.0mL去离子水加入超声雾化提取瓶中,后续操作过程同2.3节,仅提取时间调整为15min。

2.5硅胶基质固相分散超声雾化固相提取(SGMSPDUANES)PE

2.6

将300mg加标样品粉末、200UL去离子水和150mg硅胶

将300mg加标样品粉末、200UL去离子水和150mg表面固载有[C6MIM][PF6]的硅胶加入玛瑙研钵,研磨5min。

将粉末加入装有300mgC18的固相萃取柱中,用20.0mL去离子水淋洗,吹干,后续操作过程同2.3节。

3结果与讨论

3.1固化载体选择

按文献[20,21]的方法考察了4种固化载体:

硅胶、中性氧化铝、硅藻土和C1&

结果表明,硅胶对离子液体的固载效果最好,这与硅胶的比表面积较大及SiOH吸附作用力强有关,所以选择硅胶作为固化载体。

3.2离子液体种类和吸附量的选择

硅胶表面固载离子液体方法采用直接浸渍法[20,21]。

离子

液体的烷烃链对提取存在影响,烷烃链长虽然有助于MSPDi程中小极性物质的提取,但是在UANEi程中,会增加提取液对固相萃取小柱的洗脱能力,降低分析物的回收率。

实验结果表明,质量和固载浓度(0.0015mol/g)相同,而烷烃链长度不同的离子液体([C4MIM][PF6],[C6MIM][PF6],[C8MIM][PF6])固载的硅胶中,[C6MIM][PF6]固载的硅胶对5种除草剂的回收率较高,故选择[C6MIM][PF6]。

离子液体的吸附量越多,同等质量的分散剂,固体成分越少,

MSPD勺提取效果越差,而UANE雾化效果越好,固载量由1.0

2.5mmol/g的实验结果见图2a,当离子液体的固载量为2.0mmoI/g时,分析物的回收率最高,因此离子液体固载量选择2.0mmol/g。

3.3分散剂勺质量

在MSPDt程中,分散剂主要是破坏样品组织结构。

但在超声雾化过程中,分散剂则会吸收超声波,减弱超声雾化提取勺喷

泉效应,阻碍气溶胶的形成。

实验中考察了0.05〜0.25g分散剂对5种三嗪除草剂回收率的影响(图2b)。

结果表明,分散

剂质量为0.15g时,分析物的回收率最高。

因此,样品量为300mg时,分散剂的质量选择为0.15g。

3.4pH值和离子强度勺影响

考察了提取液pH值和离子强度对5种分析物回收率的影响。

实验中使用HCI和NaOH调节溶液pH值。

结果表明,当提取液pH值在6〜7之间时,分析物的回收率较高,所以选择提取液pH值为7。

离子强度会影响分析物的回收率[22],为防止引入其它离

的浓度为1%时,5种分析物的回收率最大,故选择提取液中的

NaCl的浓度为1.0%。

3.5固相萃取洗脱剂和体积的影响

因乙腈对人参中内源性物质溶解度较差,而对目标物洗脱效果较好,故选择乙腈作为洗脱剂,当乙腈体积超过5.0mL时,目标物回收率变化不大,说明5.0mL乙腈可以将目标物完全洗脱,所以洗脱体积选择5.0mL。

3.6工作曲线、检出限和定量限

按最优实验条件下提取不同加标浓度(0.10〜20.00Ug/g)的人参加标样品,并进行高效液相分析,将得到的各目标分析物的峰面积对含量作图,绘制工作曲线,得到5种三嗪类除草剂回归方程和线性范围。

按信噪比(S/N)为3和10测定各目标物的检出限和定量限,实验结果见表1,定量限色谱图见图3。

3.7加标回收率和实际样品分析

采用本方法对购买的其它5个批次人参样品中的三嗪类除草剂进行检测,均未检出三嗪类除草剂。

为了考察实际样品的基质效应,在人参中添加3个浓度水平(0.50,5.00和15.00

Ug/g)的除草剂,实验结果见表2,加标回收率为78.2%〜95.4%,

RSC为3.5%〜6.0%。

结果表明,本实验方法可以用于检测人参中的三嗪类除草剂。

3.8方法对比

 

3水平(0.50,5.00和15.00卩g/g)的加标样品按照2.42.6节方法进行处理,结果见表3。

结果表明,基质固相分散超

目标

声雾化提取的回收率均高于单一使用超声雾化提取法或基质固相分散法,尤其是使用离子液体固载的硅胶作为分散剂时,物的回收率高于硅胶作为分散剂时的回收率。

本研究使用离子液体基质固相分散超声雾化固相萃取法提取人参中的5种三嗪类除草剂,经考察相关影响因素,确立了最优提取条件,对6批次人参样品中的三嗪除草剂进行了检测。

结果表明,与对比方法相比,本方法具有回收率高、操作简单、

超声雾化固相萃取法可作为一种有效的中药中农药残留的提取

方法。

References

1ZhangPX,JinYR,ChenJF,YaoH,ZhangHQ,

YuAM,LiXW.Chromatographia,2013,76(1516):

967-974

2WangL,LiD,BaoCL,YouJY,WangZM,Shi

YH,ZhangHQ.Ultrason.Sonochem.,2008,15(5):

738-746

5WeiSG,ZhangHH,WangYQ,WangL,LiXY

WangYH,ZhangHQ,XuX,ShiYH.J.Chromatogr.A

6WANGLu,LIANGYue,

2011,1218(29):

4599-4605

WANGZiMing,LIDan,YOUJingYan,LIHongMei,SHIYuHua,

ZHANGHanQi.ChineseJ.Anal.Chem.,2009,37(4):

597-601

王璐,梁悦,汪子明,李丹,游景艳,李红梅,师宇华,张寒琦.分析化学,2009,37(4):

597-601

7

WANGLu,LIANGYue,WANGZiMing,SHIYuHua,ZHANG

2010,38(6):

881-884

WANGMo,LITuo,YAOYanLin,ZHANGChunWei.Journalof

InstrumentalAnalysis,2009,28(3):

315-318

390-396

ZHANGWeiGuo,LIN

,2008,36

11ChenD,ZhangY,MiaoH,ZhaoY,WuY.J.Agric.

FoodChem.,2015,63(44):

9855-9862

12ZHANGXingZhong,MAXiaoDong,

Jian,LIChongJiu.ChineseJ.Anal.Chem.

6):

781-787

2008,36(6):

13BedendoGC,CarasekE.J.Chromatogr.A,2010,1217

(1):

7-13

14HANFang,HUYanYun,ZHANGLei,SHENGXuan,SUN

Hao,SONGWe,iLYaNing,ZHENGPing.ChineseJ.Anal.

Chem.,2012,40(11):

1648-1653

1648-1653

FarajzadehMA.

亚宁,郑平.分析化学,2012,40(11)

15DjozanD,EbrahimiB,MahkamM,

Anal.Chim.Acta,2010,674

(1):

40-48

16RodriguezGonzdlezN,GonzdlezCastroMJ,

BeceiroGonzalezE,MuniateguiLorenzoS.FoodChem,2015,173(4):

391-396

17WangZB,SunR,WangYP,LiN,LeiL,Yang

X,YuAM,QiuFP,ZhangHQ.J.Chromatogr.B,2014,969:

205-212

18ZHAOPeng,SHIJiaWei,LIJiGe,XUFenFen,GONG

5):

651-657

赵鹏,施家威,李继革,徐奋奋,龚文杰,裘立晓.分

析化学,2015,43(5):

19CHENGHao,ZHANGLiJun,ZHANGLei,ZHANGZhanEn.

1):

137-140

2007,8

(2):

167-172

21ValkenbergMH,DecastroC,HlderichWF.Green

Chem.,2002,4

(2):

88-93

22XUNengBin,FENGJiaYong.,ZHULiBo,QIAN

UANE)

newultrasonicassistednebulizationextractionmethodcoupledwithsilicasupportedionicliquidbasedmatrixsolidphasedispersion(SSILbasedMSPD)andsolidphaseextraction(SPE)wasestablishedfortheextraction

offivetriazineherbicidesfromrootofPanaxginseng

C.A.Mey.Highperformanceliquidchromatography

HPLC)

wasusedtodeterminetheseanalytes.Experimental

parameters,whichaffecttherecoveriesofthe

analytes,

werestudiedandoptimized.Thesamplepowder

300mg)

wasmixedwith150mgofsilicagel

[C6MIM][PF6]2.0

mmol/g).AfterMSPDfor5min,themixtureswereextracted

inwater(pH7,NaCl1.0%)byUANEfor10min,andthen

elutedby5.0mLofacetonitrilefromtheSPEcolumn(C18,

300mg).Undertheoptimizedconditions,theLODsofthese

fivetriazineherbicidesareintherangesof0.020-0.035

ag/g,theconcentrationrangeoflinearrelationshipof

analytes(r2>

0.9992)areintherangesof0.15-20.00

ag/g.Therecoveriesofthesefivetriazineherbicidesare

intherangesof78.2%-95.2%,theRSDsareintherange

of3.5%-6.0%.Themethodshowsaquick,efficient,high

purifyingeffectandhighextractionrateforthetarget

analytes,andcanbeusedtoextractpesticideresidues

intraditionalChinesemedicine.

KeywordsPanaxginsengC.A.Mey;

Trzaineherbicides

Ionicliquid;

Matrixsolidphasedispersion

Ultrasonicassistednebulizationextraction

Solidphase

extraction

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2