高等数学第15章第1节傅里叶级数.docx

上传人:b****1 文档编号:13619612 上传时间:2023-06-15 格式:DOCX 页数:4 大小:19.15KB
下载 相关 举报
高等数学第15章第1节傅里叶级数.docx_第1页
第1页 / 共4页
高等数学第15章第1节傅里叶级数.docx_第2页
第2页 / 共4页
高等数学第15章第1节傅里叶级数.docx_第3页
第3页 / 共4页
高等数学第15章第1节傅里叶级数.docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

高等数学第15章第1节傅里叶级数.docx

《高等数学第15章第1节傅里叶级数.docx》由会员分享,可在线阅读,更多相关《高等数学第15章第1节傅里叶级数.docx(4页珍藏版)》请在冰点文库上搜索。

高等数学第15章第1节傅里叶级数.docx

高等数学第15章第1节傅里叶级数

高等数学第15章第1节傅里叶级数

      第十五章傅里叶级数    §1傅里叶级数  傅里叶是法国最伟大的科学家之一.他对数学、科学以及我们当代生活的影响是不可估量的。

然而,他并不是一位职业数学家或科学家,他所做的巨大贡献都是忙里偷闲完成的。

傅里叶于1768年生于法国,幼年父母就去世了。

13岁时他开始对数学十分着迷,常常一个人爬进教室,点着蜡烛研究数学问题到深夜。

后来,法国革命暴发,傅立叶于1793年参加了革命委员会,1795年先后两次被捕。

法国革命结束后,傅立叶到巴黎教书,之后随拿破仑到埃及并成为埃及研究院的长久负责人,在那里他写了一本关于埃及的书。

直到今天,仍然有人认为他是一位埃及学家,并不知道他对数学和物理学的重大贡献。

1802年,傅立叶回到法国,拿破仑任命他为巴黎警察局长长达14年之久,他作为行政官员,工作十分出色,在政界享有崇高威望。

1817年,傅立叶被送入法国科学院,从此步入较为正规的学术研究阶段。

  多年的政治生涯及颠簸不定的生活,并没有使傅里叶放弃研究数学的强烈兴趣。

事实上,早在1807年他就研究了现在称之为傅里叶分析的核心内容。

目前,傅里叶的思想和方法被广泛用于线性规划、大地测量以及电话、收音机、X射线等难以计数的科学仪器中,是基础科学和应用科学研究开发的系统平台。

所以,有的科学家称赞傅里叶分析是一首伟大的数学史诗。

  傅里叶分析的贡献在于两点:

他用数学语言提出任何一个周期函数都能表示为一组正弦函数和余弦函数之和,这一无限和,现称之为傅里叶级数。

也就是说,任何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑曲线之和。

这种表达方式实际上是将信号函数投影在正弦函数和余弦函数组成的正交基上,实施对信号的傅里叶变换。

他解释了为什么这一数学论断是有用的。

1807年,傅立叶显示任何周期函数是正弦和余弦函数叠加而成。

傅里叶分析从本质上改变了数学家对函数的看法,提供了某些微分方程的直接求解方法,为计算机和CD等数字技术的实现铺平了道路。

傅里叶分析同时也是量子力学的自然语言。

  上述两点是针对周期函数即周期信号而言的,对于非周期函数,通过傅里叶变换或周期延展转化为周期函数即可。

  从本质上讲,傅立叶变换就是一个棱镜,它把一个信号函数分解为众多的频率成分,这些频率又可以重构原来的信号函数,这种变换是可逆的且保持能量不变。

傅里叶棱镜与自然棱镜的原理是一样的,只不过自然棱镜是将自然光分解为耻、成、黄、绿、青、蓝、紫多种颜色的光而已。

  下面我们就来讨论在数学与工程技术中都有着广泛应用的一类函数项级数,即三角函数列所产生的三角级数,也就是傅里叶级数.    一三角级数?

正交函数系  在科学实验与工程技术的某些现象中,常会碰到一种周期运动.最简单的周期运动,可用正弦函数  y?

Asin(?

x?

?

)      来描写.所表达的周期运动也称为简谐运动,其中A为振幅,?

为初相角,?

为角频率,于是简谐振动y的周期是T=  2?

?

  yn?

Aksin(k?

x?

?

x),k?

1,2,?

n,        的叠加  y?

.较为复杂的周期运动,则常是几个简谐振动  ?

yk?

1nk  ?

?

Aksin(k?

x?

?

k).      k?

1n于简谐振动yk的周期为  ?

T2?

(T?

),k?

1,2,?

n,所以函数的周期为T,对无穷k?

多个简谐振动进行叠加就是到函数项级数  A0?

?

Ansin(n?

x?

?

n).  n?

1      若级数收敛,则它所描述的是更为一般的周期运动现象.对于级数,我们只要讨  论?

?

1的情形.于  sin(nx?

?

n)?

sin?

ncosnx?

cos?

nsinnx,所以A0?

?

An?

1’?

nsin(nx?

?

n)?

A0?

?

(Ansin?

ncosnx?

Ancos?

nsinnx).    n?

1?

记  A0?

a0,Ansin?

n?

an,Ancos?

n?

bn,n?

1,2,?

2则级数可写成  ?

a0  ?

?

(ancosnx?

bnsinnx).      2n?

1它是三角函数列  1,cosx,sinx,cos2x,sin2x,?

cosnx,sinnx,?

    所产生的一般形式的三角级数.  容易验证,若三角级数收敛,则它的和一定是一个以2?

为周期的函数.关于三角级数的收敛有如下定理:

定理若级数      a02?

?

(an?

bn)  n?

1?

收敛,则级数(4)在整个数轴上绝对收敛且一致收敛.  证对任何实数x,于    ancosnx?

bnsinnx?

an?

bn,  应用魏尔斯拉斯M判别法(定理)就能推得本定理的结论.    □为进一步研究三角级数(4)的收敛性,我们先探讨三角函数系(5)具有哪些特性.首先容易看出,三角函数系(5)中所有函数具有共同的周期2?

.  其次,在三角函数系(5)中,任何两个不相同的函数的乘积在[?

?

?

]上的积分都等于零,即      ?

?

?

?

cosnxdx?

?

sinnxdx?

0,    (6)  ?

?

?

?

sinmxsinnxdx?

0(m?

n),  ?

?

?

?

    (7)    ?

?

?

?

?

?

cosmxsinnxdx?

0.?

而(5)中任何一个函数的平方在[?

?

?

]上的积分都不等于零,即  ?

?

?

cosmxcosnxdx?

0(m?

n),?

?

?

?

nxdx?

?

sin2xdx?

?

?

?

?

?

?

  ?

?

    (8)  2?

?

?

?

1dx?

2?

.?

通常把两个函数?

与?

在[a,b]上可积,且    ?

?

cos?

2?

  ?

?

(x)?

(x)dx?

0ab  的函数?

与?

称为在[a,b]上是正交的.此,我们说三角函数系(5)在[?

?

?

]上具有正交性,或说(5)是正交函数系.  二以2?

为周期的函数的傅里叶级数  应用三角函数系(5)的正交性,我们讨论三角级数(4)的和函数f与级数(4)的系数  a0,an,bn之间的关系.  定理若在整个数轴上  ?

a0  f(x)?

?

?

(ancosnx?

bnsinnx)    (9)  2n?

1且等式右边级数一致收敛,则有如下关系式:

  an?

  bn?

?

?

?

?

1?

f(x)cosnxdx,n?

0,1,2,?

    (10a)  f(x)sinnxdx,n?

1,2,?

.    (10b)  ?

1?

?

?

?

?

证定理条件,函数f在[?

?

?

]上连续且可积.对(9)式逐项积分得  ?

?

f(x)dx  ?

a?

02    即得  ?

?

?

?

dx?

?

(an?

cosnxdx?

bn?

sinnxdx).  n?

1?

?

?

?

?

?

?

有关系式(6)知,上式右边的括号内的积分都等于零.所以  ?

?

?

?

f(x)dx?

a0?

2?

?

a0?

2    a0?

1?

?

?

?

?

f(x)dx,  现以coskx乘式两边,得  ?

a0  f(x)coskx?

coskx?

?

(ancosnxcoskx?

bnsinnxcoskx).(11)  2n?

1从第十三章§1习题4知道,级数(9)一致收敛,可推出级数(11)也一致收敛.于是对级数(11)  逐项求积,有    ?

?

?

?

af(x)coskxdx?

02?

?

coskxdx?

?

(a?

?

cosnxcoskxdx?

b?

?

sinnxcoskxdx).  ?

nn?

1?

n?

?

?

?

?

三角函数的正交性,右边除了以ak为系数的那一项积分      ?

?

?

?

?

cos2kxdx?

?

  外,其他各项积分都等于0,于是得出:

    即    ak?

?

?

f(x)coskxdx?

a?

(k?

1,2,?

),  ?

k1?

1?

?

?

?

f(x)coskxdx(k?

1,2,?

).  同理,(9)式两边乘以sinkx,并逐项求积,可得    bk?

?

?

?

f(x)sinkxdx(k?

1,2,?

).  □  ?

?

一般地说,若f是以2?

为周期且在?

?

?

?

?

上可积的函数,则可按公式(10)计算出an和  bn,它们称为函数f(关于三角函数系)的傅里叶系数,以f的傅里叶系数为系数的三角级数(9)称为f(关于三角函数系)的傅里叶级数,记作  ?

a0  f(x)~?

?

(ancosnx?

bnsinnx).  (12)  2n?

1这里记号”~”表示上式右边是左边函数的傅里叶级数.定理知道:

若(9)式右边的三角级数在整个数轴上一致收敛于其和函数f,则此三角函数就是f的傅里叶级数,即此时(12)式中的记号”~”可换为等号.然而,若从以2?

为周期且在[?

?

?

]上可积的函数f出发,按公式(10)求出其傅里叶系数并得到傅里叶级数(12),这时还需讨论此级数是否收敛.如果收敛,是否收敛于f本身.这就是下一段所要叙述的内容.    三收敛定理  下面的定理称为傅里叶级数收敛定理.  定理若以2?

为周期的函数f在[?

?

?

]上按段光滑,则在每一点x?

[?

?

?

],f的傅里叶级数(12)收敛于f在点x的左、右极限的算术平均值,即  f(x?

0)?

f(x?

0)a0?

  ?

?

?

(ancosnx?

bnsinnx),  22n?

1其中an,bn为f的傅里叶级数.  下面先对定理中的某些概念作解释,然后举例说明如何运用这个定理把函数展开成傅里叶级数.关于收敛定理的证明将在§3中进行.  我们知道,若f的导函数在[a,b]上连续,则称f在[a,b]上光滑.但若定义在[a,b]上除了至多有有限个第一间断点的函数f的导函数在[a,b]上除了至多有限个点外都存在且连续,在这有限个点上导函数f’的左右极限存在,则称f在[a,b]上按段光滑.  根据上述定义,若函数f在[a,b]上按段光滑,则有如下重要性质:

  1?

f在[a,b]上可积.  2在[a,b]上每一点都存在f(x?

0),且有:

  ?

f(x?

t)?

f(x?

0)?

f’(x?

0),t?

0t      (13)  f(x?

t)?

f(x?

0)’lim?

f(x?

0).t?

0?

t?

3在补充定义f’在[a,b]上那些至多有限个不存在点上的值后(仍记为f’),f’在[a,b]lim?

上可积.  从几何图形上讲,在区间[a,b]上按段光滑函数,是有限个光滑弧段所组成,它至多有有限个第一类间断点与  角点(图15-1).          收敛定理指出,f的傅里叶级数在点x处收敛于这一点上f的左、右极限  f(x?

0)?

f(x?

0);而  2f(x?

0)?

f(x?

0)?

f(x),当f在点x连续时,则有  2即此时f的傅里叶级数收敛于f(x).于是有如下推论.  推论若f是以2?

为周期的连续函数,且在[?

?

?

]上按段光滑,则f的傅里叶级数在(?

?

?

)上收敛于f.  的算术平均值  根据收敛定理的假设,f是以2?

为周期的函数,所以系数公式(10)中的积分区间  [?

?

?

]可以改为长度为2?

的任何区间,而不影响an,bn的值:

  1c?

2?

an?

?

f(x)cosnxdx,n?

0,1,2,?

    ?

1cbn?

?

?

c?

2?

    (10’)    cf(x)sinnxdx,n?

1,2,?

其中c为任何实数.  注意:

在具体讨论函数的傅里叶级数展开式时,常只给出函数f在(?

?

?

](或[?

?

?

))上的解析表达式,但读者应理解为它是定义在整个数轴上以2?

为周期的函数.即在(?

?

?

]以外的部分按函数在(?

?

?

]上的对应关系作周期延拓.如f为(?

?

?

]上的解析表达式,那么周期延拓后的函数为  ?

f(x?

2k?

),x?

((2k?

1)?

(2k?

1)?

k?

?

1,?

2,?

?

的傅里叶级数.  如图15-2所示.因此我们说函数f的傅里叶级数就是指函数f  ?

(x)?

?

  f?

f(x),x?

(?

?

?

],    例1设    ?

x,0?

x?

?

    f(x)?

?

  0,?

?

?

x?

0,?

求f的傅里叶级数展开式.  解函数f及其周期延拓后的图象如图15-3所示.显然f是按段光滑    的,故定理(收敛定理),它可以展开成傅里叶级数.于    a0?

  1?

?

?

?

?

f(x)dx?

1?

?

?

0xdx?

?

.  2当n?

1时,      

  

  

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2