1401室实验.docx

上传人:b****1 文档编号:1383798 上传时间:2023-04-30 格式:DOCX 页数:75 大小:1.61MB
下载 相关 举报
1401室实验.docx_第1页
第1页 / 共75页
1401室实验.docx_第2页
第2页 / 共75页
1401室实验.docx_第3页
第3页 / 共75页
1401室实验.docx_第4页
第4页 / 共75页
1401室实验.docx_第5页
第5页 / 共75页
1401室实验.docx_第6页
第6页 / 共75页
1401室实验.docx_第7页
第7页 / 共75页
1401室实验.docx_第8页
第8页 / 共75页
1401室实验.docx_第9页
第9页 / 共75页
1401室实验.docx_第10页
第10页 / 共75页
1401室实验.docx_第11页
第11页 / 共75页
1401室实验.docx_第12页
第12页 / 共75页
1401室实验.docx_第13页
第13页 / 共75页
1401室实验.docx_第14页
第14页 / 共75页
1401室实验.docx_第15页
第15页 / 共75页
1401室实验.docx_第16页
第16页 / 共75页
1401室实验.docx_第17页
第17页 / 共75页
1401室实验.docx_第18页
第18页 / 共75页
1401室实验.docx_第19页
第19页 / 共75页
1401室实验.docx_第20页
第20页 / 共75页
亲,该文档总共75页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

1401室实验.docx

《1401室实验.docx》由会员分享,可在线阅读,更多相关《1401室实验.docx(75页珍藏版)》请在冰点文库上搜索。

1401室实验.docx

1401室实验

7

实验一、直导体外的磁场

实验目的

1、直导体附近磁场的磁感应强度与直导体中电流的函数关系;

2、直导体附近磁场的磁感应强度与距直导体的距离的函数关系。

实验设备

①各种形状导体4套;②大电流变压器;③电源15VAC/12VDC/5A;④特斯拉表;⑤霍耳元件探针;⑥钳形电流计;⑦万用数字电表;⑧米尺;⑨支撑杆、连接导线等。

有关术语

磁通量;电磁感应;磁场的叠加。

实验原理

根据Biot-Savart定律,一根长AB的直导线通过的电流强度为I,直导体外一点Q处的磁感应强度为:

方向为右手定则或按电流I方向与矢径r方向的矢积方向决定。

当Q点距离导线很近时,

(1)

 

图1.求载流直流导线的磁场

实验内容

1、实验设备安装与调节,满足可测的实验要求:

实验设备如图安装,注意各个接头一定要接触紧密。

调节电源3中心的旋钮,改变通过导体的电流,从钳形电流计6所连接的万用电表(放在交流电压的200mv档)可直接读出导体内的电流的大小(1mv=1安培)。

将霍耳元件探针5(注意不要将其与导线接触)放在距离导线的指定距离处在特斯拉计的显示窗口就可以读出该处的磁感应强度B。

2、将霍耳元件放在距导线1cm左右处,从0开始调节导线中的电流,从40安培开始每隔10安培左右读一次磁感应强度的值,直到100安培。

自行设计表格记录下相应实验数据。

3、使电流保持在90安培,改变距离r(从10cm-0.5cm)。

4、作出以上两实验的曲线,用作图法或最小二乘法求出0的值(注意单位用SI国际单位制)

5、改变导线形状,再按上述步骤重复做实验,分析结果得出你的结论,并用理论拟合来说明结论的正确性。

(注:

设备中还有3套导线,同学可以选一或二种,并自行设计实验)。

 

 

图2.实验设备安装连线图

7

拓展实验:

 

实验二、螺线管内的磁场的测量

实验目的

1、测量通电螺线管线圈内的磁感应强度,讨论通电螺线管线圈内部I、L、x和B之间关系;

2、计算出真空中的磁导率。

实验设备:

①螺线管线圈;②大电流电源;③磁场强度计;④探针(霍耳元件);⑤导线和有机玻璃支架等。

实验原理

1

按照Biot-Savart定律可以推出在螺线管内任意一点P的磁感应强度B为:

式中

螺线管的长为L,x为螺线管中点到P点的距离。

I为通过螺线管的电流。

n为螺线管单位长度的匝数。

 

图1通电螺线管磁场分布

实验内容

1、按上图装好仪器设备,将螺线管接到电流源上,将霍耳元件(探针)接到磁强计上,并将探针头放在螺线管的中央a点处。

选择磁强计的测量范围为20mT,利用磁强计的”Compensation”钮调零。

1

5

4

3

1

2

图2.实验设备接线图

2、实验测量:

(螺线管总圈数N=30)

(1)测量螺线管内电流I变化时a点的磁感应强度B。

将螺线管的b点放在12.5cm处,c点放在27.5cm处,此时线圈长L为15cm。

调节电流源从0开始每次增加2A,记录B,但要注意每次测量时都要将电流源打到0点,将磁强计重新调零。

(2)以a点为中点,改变b、c点的距离,使线圈长L分别为8、10、15、20、25、30、35、40cm,分别纪录B,注意每次测量时都要将电流源打到0点,将磁强计重新调零。

(3)如果探针没有处在螺线管的轴心位置,对实验结果有否影响?

用实验测量结果回答,说明原因。

(4)自行设计利用该设备来测量当地的地磁场,如果不成功则分析出原因。

如果成功写出数据和结论。

(选)

思考题

1、无限长均匀载流螺线管的磁场分布是否与其截面的形状有关?

结合该装置能否给出具有实际意义结论?

拓展实验:

地磁场的测量;

 

实验三、电子荷质比

实验目的:

1、掌握电子的荷质比测量的原理;

2、测定电子的荷质比。

实验仪器

①细光束管;②亥姆霍兹线圈及测量设备;③两块万用表;④管电压源;⑤直流电源。

相关术语

荷质比;电子束;洛伦兹力

实验原理

电子质量的直接测出较难,相比之下,电子的荷质比的测量要容易的多,故测出荷质比后,根据电量,推算出电子的质量。

在实验中,细光束管中的电子通过一个电位差U而得到速度v,由于亥姆霍兹线圈产生的磁场B垂直于电子的运动方向,故洛伦兹力成为向心力使电子做半径为r的圆周运动。

可推算出计算公式为:

ε=e/me=2·U/(B2·r2)。

亥姆霍兹线圈对中的磁场B与电流I成线性关系,即B=kI,实验中已给出该亥姆霍兹线圈B与I的对应数值表,可以此得到k值,最终算出荷质比。

实验步骤

 

图1实验装置接线图

1、实验用电源均应处于关闭状态,其上所有电位器都左旋至锁住位置;

2、开启向光束管供电的管电压源,将加速电压调到300V,预热一段时间后,电子束开始射出。

在0-10V间调整调焦电压,对电子束进行调焦,最终使电子束狭窄﹑清晰﹑边界清楚;

3、打开亥姆霍兹线圈的直流电源,调整输出电流,使电子束偏转形成一个封闭的轨迹;

4、移动测量设备上的左边滑块,使其内侧﹑镜中的像和电子束的出射口在一条直线上;5、调整右滑块的位置,使两滑块内侧间距离为8mm,且该滑块内侧与镜子中的像对齐;

6、调整亥姆霍兹线圈中的电流使电子束轨迹与两滑块内侧相切;

7、将加速电压以10V为间隔逐步减到100V,其间调整线圈电流,使电子束轨迹始终保持在8mm。

记下对应的加速电压和线圈电流值;

8、由加速电压值U、线圈电流I绘出U=f(I2)图,求出斜率α;

9、根据给定的亥姆霍兹线圈的B与I的关系,得到比例系数k;

10、算出电子荷质比。

 

图2电子荷质比测量主体设备图

注意事项

1、高压危险,操作时不要随意改变接线,不可接触接线板和亥姆霍兹线圈。

2、细光束管属玻璃制品,易碎,小心操作。

*附录

该亥姆霍兹线圈的B与I的关系,

7

拓展实验:

洛仑兹力的演示实验,安掊力的演示实验

 

实验四、磁阻效应及磁阻传感器的特性研究

【实验目的】

1、了解磁阻效应的基本原理及测量磁阻效应的方法;

2、测量锑化铟传感器的电阻与磁感应强度的关系;

3、画出锑化铟传感器电阻变化与磁感应强度的关系曲线,进行相应的曲线和直线拟合;

4、学习用磁阻传感器测量磁场的方法。

【实验原理】磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。

和霍尔效应一样,磁阻效应也是由于载流子在磁场中受到的洛仑兹力而产生的。

若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。

磁阻效应还与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,该效应称为几何磁阻效应。

由于半导体的电阻率随磁场的增加而增加,有人又把该磁阻效应称为物理磁阻效应。

目前,磁阻效应广泛应用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。

一定条件下,导电材料的电阻值R随磁感应强度B变化规律称为磁阻效应。

如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场。

如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。

如果将图1中UH短路,磁阻效应更明显。

因为在上述的情况里,磁场与外加电场垂直,所以该磁阻效应称为横向磁阻效应。

当磁感应强度平行于电流时,是纵向情况。

若载流子的有效质量和弛豫时间与移动方向无关,纵向磁感应强度不引起载流子漂移运动的偏转,因而没有纵向霍尔效应的磁阻。

而对于载流子的有效质量和弛豫时间与移动方向有关的情形,若作用力的方向不在载流子的有效质量和弛豫时间的主轴方向上,此时,载流子的加速度和漂移移动方向与作用力的方向不相同,也可引起载流子漂移运动的偏转现象,其结果总是导致样品的纵向电流减小电阻增加。

在磁感应强度与电流方向平行情况下所引起的电阻增加的效应,被称为纵向磁阻效应。

通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。

其中ρ(0)为零磁场时的电阻率,设磁电阻电阻值在磁感受应强度为B的磁场的电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。

由于磁阻传感器电阻的相对变化率ΔR/R(0)正比于Δρ/ρ(0),这里ΔR=R(B)-R(0)。

因此也可以用磁阻传感器电阻的相对改变量ΔR/R(0)来表示磁阻效应的大小。

测量磁电阻电阻值R与磁感应强度B的关系实验装置及线路如图2所示。

尽管不同的磁阻装置有不同的灵敏度,但其电阻的相对变化率ΔR/R(0)与外磁场的关系都是相似的。

实验证明,磁阻效应对外加磁场的极性不灵敏,就是正负磁场的相应相同。

一般情况下外加磁场较弱时,电阻相对变化率ΔR/R(0)正比于磁感应强度B的二次方;随磁场的加强,ΔR/R(0)与磁感应强度B呈线性函数关系;当外加磁场超过特定值时,ΔR/R(0)与磁感应强度B的响应会趋于饱和。

另外,ΔR/R(0)对总磁场的方向很灵敏,总磁场为外磁场与内磁场之和,而内磁场与磁阻薄膜的性质和几何形状有关。

 

图1磁阻效应图2测量磁电阻实验装置

【实验仪器】

实验采用DH4510磁阻效应实验仪,研究锑化铟(InSb)磁阻传感器的磁阻特性,图3为该仪器示意图

 

图3(a)磁阻效应信号号源面板图田(b)磁阻效应测试架图

DH4510磁阻实验仪由信号源和测试架两部分组成。

实验仪包括双路可调直流恒流源、电流表、数字式磁场强度计(毫特计)和磁阻电压转换测量表(毫

伏表)、控制电源等。

测试架包括励磁线圈(含电磁铁)、锑化铟(InSb)磁阻传感器、GaAs霍尔传感器、转换继电器及导线等组成。

仪器连接如图4所示。

【实验内容】1、在锑化铟磁阻传感器工作电流保持不变的条件下,测量锑化铟磁阻传感器的电阻与磁感应强度的关系。

作ΔR/R(0)与B的关系曲线,并进行曲线拟合。

(实验步骤由学生自己拟定,实验时注意GaAs和InSb传感器工作电流应调至1mA)。

2、用磁阻传感器测量一个未知的磁场强度,与毫特计测得的磁场强度相比较,估算测量误差。

【实验步骤】仪器开机前须将IM调节电位器、Is电流调节电位器逆时针方向旋到底。

1、信号源的“IM直流源”端用导线接至测试架的“励磁电流”输入端,红导线与红接线柱相连,黑导线与黑接线柱相连,如图4所示。

调节“IM电流调节”电位器可改变输入励磁线圈电流的大小,从而改变电磁铁间隙中磁感应强度的大小。

2、将实验仪信号源背部的二芯话筒通过专用的二芯话筒线接至测试架的工作电压输入端,这是一路提供继电器工作的12V直流控制电源,作为继电器的控制电压。

红的香蕉插接红接线柱,黑的香蕉插接黑接线柱。

3、信号源上“Is直流恒流源”输出用导线接至工作电流切换继电器K1接线柱的中间两端,红导线与红接线柱相连,黑导线与黑接线柱相连。

如图4所示。

4、信号源的“信号输入”两端用导线接至输出信号切换继电器K2接线柱的中间两端,红导线与红接线柱相连,黑导线与黑接线柱相连。

如图4所示。

5、将继电器K1接线柱的下面两端与继电器K2接线柱的下面两端相连,红导线与红接线柱相连,黑导线与黑接线柱相连。

如图4所示。

6、将锑化铟(InSb)磁阻传感器(蓝、绿引出线)的两端与工作电流切换继电器K1接线柱的下面两端相连,红的香蕉插接红接线柱,黑的香蕉插接黑接线柱。

即蓝引出线接至红接线柱,绿引出线接至黑接线柱。

如图4所示。

 

图4磁阻效应接线图

7、砷化镓(GaAs)霍尔传感器的的四引出线按线的长短已分成两组,红、棕为一组(为工作电流输入端),黄、橙为一组(为霍尔电压输出端),红、棕这一组线接至工作电流切换继电器K1接线柱的上面两端,黄、橙这一组线接至输出信号切换继电器K2接线柱的上面两端。

红的香蕉插接红接线柱,黑的香蕉插接黑接线柱,如图4所示。

8、确认接线正确完成后,打开交流电源,将信号源及测试架的切换开关都处于按上状态,这时将测试架上取出的霍尔电压信号输入到信号源,经内部处理转换成磁场强度由表头显示。

9、调节Is调节电位器让Is表头显示为1.00mA,然后调节IM,使磁场强度显示为10mT,记下励磁电流值的大小。

10、按下信号源及测试架上的切换开关,测量并记录该磁场强度下对应的磁阻电压。

注意:

这时的Is表头显示应为1.00mA。

11、将信号源及测试架上的切换开关弹起,再调节IM调节电位器,使磁场强度显示为20mT,记下该磁场强度及对应的励磁电流值。

测量并记录该磁场强度下对应的磁阻电压。

12、参考表1所列的磁场强度,重复以上10~11步骤。

13、根据表1数据列出表2,在B<0.06T时对ΔR/R(0)作曲线拟合,求出R与B的关系。

14、根据表1数据列出表3,在B>0.12T时对ΔR/R(0)作曲线拟合,求出R与B的关系。

15、调节IM电流,使电磁铁产生一个未知的磁场强度。

测量磁阻传感器的磁阻电压,根据求得的ΔR/R(0)与B的关系曲线,求得磁场强度。

16、用仪器所配的毫特计测量该磁场强度,将测得的磁场强度作为准确值与磁阻传感器测得的磁场强度值与相比较,估算测量误差。

七、实验参考表格(仅供参考)

表1电流Is=1mAΔR/R(0)=14.5B2

电磁铁

InSb

B~△R/R(0)对应关系

IM/mA

UR/mV

B/mT

R/Ω

△R/R(0)

由上面拟合可知在B<0.06T时磁阻变化率ΔR/R(0)与磁感应强度B成二次函数关系;表2

△R/R(0)i

Bi

△R/R(0)i×Bi

(△R/R(0)i)2

Bi2

2、对表1数据在B>0.12T时对ΔR/R(0)作曲线拟合如下表3:

△R/R(0)i

Bi

△R/R(0)i×Bi

(△R/R(0)i)2

Bi2

表3

由上面拟合可知在B>0.12T时磁阻变化率ΔR/R(0)与磁感应强度B成一次函数关系

ΔR/R(0)=5.35B-0.59

3、按以上实验数据可得到图曲线。

八、思考题

1、磁阻效应是怎样产生的?

磁阻效应和霍尔效应有何内部联系?

2、实验时为何要保持霍尔工作电流和流过磁阻元件的电流不变?

3、不同的磁场强度时,磁阻传感器的电阻值与磁感应强度关系有何变化?

4、磁阻传感器的电阻值与磁场的极性和方向有何关系?

 

实验五、高临界温度超导体临界温度的电阻测量法

实验目的

1.利用动态法测量高临界温度氧化物超导材料的电阻率随温度的变化关系。

2.通过实验掌握利用液氮容器内的低温空间改变氧化物超导材料温度、测温及控温的原理和方法。

3.学习利用四端子法测量超导材料电阻和热电势的消除等基本实验方法以及实验结果的分析与处理。

4.选用稳态法测量临界温度氧化物超导材料的电阻率随温度的变化关系并与动态进行比较。

实验仪器

1.低温恒温器

实验用的恒温器如图1所示,均温块1是一块经过加工的紫铜块,利用其良好的导热性能来取得较好的温度均匀区,使固定在均温块上的样品和温度计的温度趋于一致。

铜套2的作用是使样品与外部环境隔离,减小样品温度波动。

提拉杆3采用低热导的不锈钢管以减少对均温块的漏热,经过定标的铂电阻温度计4及加热器5与均温块之间既保持良好的热接触又保持可靠的电绝缘。

测试用的液氮杜瓦瓶宜采用漏热小,损耗率低的产品,其温度梯度场的稳定性较好,有利于样品温度的稳定。

为便于样品在液氮容器内的上下移动,附设相应的提拉装置。

图1低温恒温器图图2高Tc超导体电阻——温度特性测量仪工作原理示意图

2.测量仪器

它由安装了样品的低温恒温器,测温、控温仪器,数据采集、传输和处理系统以及电脑组成,既可进行动态法实时测量,也可进行稳态法测量。

动态法测量时可分别进行不同电流方向的升温和降温测量,以观察和检测因样品和温度计之间的动态温差造成的测量误差以及样品及测量回路热电势给测量带来的影响。

动态测量数据经测量仪器处理后直接进入电脑X-Y记录仪显示、处理或打印输出。

稳态法测量结果经由键盘输入计算机(如Origin软件)。

作出R-T特性供分析处理或打印输出。

实验原理

1.临界温度Tc的定义及其规定

超导体具有零电阻效应,通常把外部条件(磁场、电流、应力等)维持在足够低值时电阻突然变为零的温度称为超导临界温度。

实验表明,超导材料发生正常→超导转变时,电阻的变化是在一定的温度间隔中发生,而不是突然变为零的,如图3所示。

起始温度Ts(OnsetPoint)为R—T曲线开始偏离线性所对应的温度;中点温度Tm(midPoint)为电阻下降至起始温度电阻Rs的一半时的温度;零电阻温度T为电阻降至零时的温度。

而转变宽度ΔT定义为Rs下降到90%及10%所对应的温度间隔。

高Tc材料发现之前,对于金属、合金及化合物等超导体,长期以来在测试工作中,一般将中点温度定义为Tc,即Tc=Tm。

对于高Tc氧化物超导体,由于其转变宽度ΔT较宽,有些新试制的样品ΔT可达十几K,再沿用传统规定容易引起混乱。

因此,为了说明样品的性能,目前发表的文章中一般均给出零电阻温度T(R=0)的数值,有时甚至同时给出上述的起始温度、中点温度及零电阻温度。

而所谓零电阻在测量中总是与测量仪表的精度、样品的几何形状及尺寸、电极间的距离以及流过样品的电流大小等因素有关,因而零电阻温度也与上述诸因素有关、这是测量时应予注意的。

2.样品电极的制作

目前所研制的高Tc氧化物超导材料多为质地松脆的陶瓷材料,即使是精心制作的电极,电极与材料间的接触电阻也常达零点几欧姆,这与零电阻的测量要求显然是不符合的。

为消除接触电阻对测量的影响,常采用图

(二)所示的四端子法。

两根电流引线与直流恒流电源相连,两根电压引线连至数字电压表或经数据放大器放大后接至X-Y记录仪,用来检测样品的电压。

按此接法,电流引线电阻及电极1、4与样品的接触电阻与2、3端的电压测量无关。

2、3两电极与样品间存在接触电阻,通向电压表的引线也存在电阻,但是由于电压测量回路的高输入阻抗特性,吸收电流极小,因此能避免引线和接触电阻给测量带来的影响。

按此法测得电极2、3端的电压除以流过样品的电流,即为样品电极2、3端间的电阻。

本实验所用超导样品为商品化的银包套铋锶钙铜氧高Tc超导样品,四个电极直接用焊锡焊接。

3.温度控制及测量

临界温度Tc的测量工作取决于合理的温度控制及正确的温度测量。

目前高Tc氧化物超导材料的临界温度大多在60K以上,因而冷源多用液氮。

纯净液氮在一个大气压下的沸点为77.348K,三相点为63.148K,但在实际使用中由于液氮的不纯,沸点稍高而三相点稍低(严格地说,不纯净的液氮不存在三相点)。

对三相点和沸点之间的温度,只要把样品直接浸入液氮,并对密封的液氮容器抽气降温,一定的蒸汽压就对应于一定的温度。

在77K以上直至300K,常采用如下两种基本方法。

(1)普通恒温器控温法。

低温恒温器通常是指这样的实验装置。

它利用低温流体或其他方法,使样品处在恒定的或按所需方式变化的低温温度下,并能对样品进行一种或多种物理量的测量。

这里所称的普通恒温器控温法,指的是利用一般绝热的恒温器内的锰铜线或镍铬线等绕制的电加热器的加热功率来平衡液池冷量,从而控制恒温器的温度稳定在某个所需的中间温度上。

改变加热功率,可使平衡温度升高或降低。

由于样品及温度计都安置在恒温器内并保持良好的热接触,因而样品的温度可以严格控制并被测量。

这样控温方式的优点是控温精度较高,温度的均匀性较好,温度的稳定时间长。

用于电阻法测量时,可以同时测量多个样品。

由于这种控温法是点控制的,因此普通恒温器控温法应用于测量时又称定点测量法。

(2)温度梯度法。

这是指利用贮存液氮的杜瓦容器内液面以上空间存在的温度梯度来自然获取中间温度的一种简便易行的控温方法。

样品在液面以上不同位置获得不同温度。

为正确反映样品的温度,通常要设计一个紫铜均温块,将温度计和样品与紫铜均温块进行良好的热接触。

紫铜块连结至一根不锈钢管,借助于不锈钢管进行提拉以改变温度。

本实验的恒温器设计综合上述两种基本方法,既能进行动态测量,也能进行定点的稳态测量,以便进行两种测量方法和测量结果的比较。

4.热电势及热电势的消除

用四端子法测量样品在低温下的电阻时常会发现,即使没有电流流过样品,电压端也常能测量到几微伏至几十微伏的电压降。

而对于高Tc超导样品,能检测到的电阻常在10-5~10-1Ω之间,测量电流通常取1至100mA左右,取更大的电流将对测量结果有影响。

据此换算,由于电流流过样品而在电压引线端产生的电压降只在10-2~103μV之间,因而热电势对测量的影响很大,若不采取有效的测量方法予以消除,有时会将良好的超导样品误作非超导材料,造成错误的判断。

测量中出现的热电势主要来源于样品上的温度梯度。

为什么放在恒温器上的样品会出现温度的不均匀分布呢?

这取决于样品与均温块热接触的状况。

若样品简单地压在均温块上,样品与均温块之间的接触热阻较大。

同时样品本身有一定的热阻也有一定的热容。

当均温块温度变化时,样品温度的弛豫时间与上述热阻及热容有关,热阻及热容的乘积越大,弛豫时间越长。

特别在动态测量情形,样品各处的温度弛豫造成的温度分布不均匀不能忽略。

即使在稳态的情形,若样品与均温块之间只是局部热接触(如不平坦的样品面与平坦的均温块接触),由引线的漏热等因素将造成样品内形成一定的温度梯度。

样品上的温差ΔT会引起载流子的扩散,产生热电势:

E=SΔT

(1)

S是样品的微分热电势,其单位是μV·K-1。

对高Tc超导样品热电势的讨论比较复杂,它与载流子的性质以及电导率在费密面上的分布有关,利用热电势的测量可以获知载流子性质的信息。

对于同时存在两种载流子的情况,它们对热电势的贡献要乘一权重,满足所谓Nordheim-Gorter法则。

(2)

式中SA、SB是A、B两种载流子本身的热电势,σA、σB分别为A、B两种载流子相应的电导率。

σ=σA+σB。

材料处在超导态时,S=0。

为消除热电势对测量电阻率的影响,通常采取下列措施:

(1)对于动态测量。

应将样品制得薄而平坦。

样品的电极引线尽量采用直径较细的导线,例如直径小于0.1mm的铜线。

电极引线与均温块之间要建立较好的热接触,以避免外界热量经电极引线流向样品。

同时样品与均温块之间用导热良好的导电银浆粘接,以减少热弛豫带来的误差。

另一方面,温度计的响应时间要尽可能小,与均温块的热接触要良好,测量中温度变化应该相对地较缓慢。

对于动态测量中电阻不能下降到零的样品,不能轻易得出该样品不超导的结论,而应该在液氮温度附近,通过后面所述的电流换向法或通断法检查。

(2)对于稳态测量。

当恒温器上的温度计达到平衡值时,应观察样品两侧电压电极间的电压降及叠加的热电势值是否趋向稳定,稳定后可以采用如下方法。

①电流换向法:

将恒流电源的电流I反向,分别得到电压测量值UA、UB,则超导材料测电压电极间的电阻为

(4.4-3)

②电流通断法:

切断恒流电源的电流,此时测电压电极间量到的电压即是样品及引线的积分热电势,通电流后得到新的测量值,减去热电势即是真正的电压降。

若通断电流时测量值无变化,表明样品已经进入超导态。

实验内容:

1.利用动态法在电脑X-Y记录仪上分别画出样品在升温和降温过程中的电阻—温度曲线。

2.利用稳态法,在样品的零电阻温度与0℃之间测出样品的R-T分布。

3.对实验数据进行处理、分析。

4.对实验结果进行讨论。

实验步骤:

(一

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2