海洋结构翻译毕业设计翻译稿.docx

上传人:b****6 文档编号:14153367 上传时间:2023-06-21 格式:DOCX 页数:32 大小:1MB
下载 相关 举报
海洋结构翻译毕业设计翻译稿.docx_第1页
第1页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第2页
第2页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第3页
第3页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第4页
第4页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第5页
第5页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第6页
第6页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第7页
第7页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第8页
第8页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第9页
第9页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第10页
第10页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第11页
第11页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第12页
第12页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第13页
第13页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第14页
第14页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第15页
第15页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第16页
第16页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第17页
第17页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第18页
第18页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第19页
第19页 / 共32页
海洋结构翻译毕业设计翻译稿.docx_第20页
第20页 / 共32页
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

海洋结构翻译毕业设计翻译稿.docx

《海洋结构翻译毕业设计翻译稿.docx》由会员分享,可在线阅读,更多相关《海洋结构翻译毕业设计翻译稿.docx(32页珍藏版)》请在冰点文库上搜索。

海洋结构翻译毕业设计翻译稿.docx

海洋结构翻译毕业设计翻译稿

英语翻译原文:

MarineStructures

Corrosionratemeasurementsinsteelsheetpilewallsinamarineenvironment

Abstract

Corrosionofsteelstructuresinthemarineenvironmentisamajorproblem.Thedeteriorationofthiskindofstructuresiscostlyanddifficulttopredictbothwhendesigningnewstructuresandwhenestimatingtheremainingservicelifetimeforexistingstructures.TheaimofthisinvestigationwastofindindicativevaluesforthecorrosionrateofsteelsheetpilesontheSwedishwestcoast.Suchcorrosionrates(mm/year)canbeusedbothwhendesigningnewstructuresbyoversizingthesteelthicknessandwhenestimatingthebearingcapacityofexistingsheetpilestructures.EarlierinvestigationsonthecorrosionratesalongtheSwedisheastcoast-withsalinityfromabout0.2%to0.8%-arestillusedtodayasguidelinesforthecorrosionrateofallsteelstructuresintheSwedishmaritimeenvironmenteventhoughthesalinityonthewestcoastcanbeashighas3.0%.

SteelsheetpilewharfslocatedintheportofHalmstadontheSwedishwestcoastwereinspectedbyultrasonicmeasurements.Threewharfstructureswithatotallengthofabout700mwereinspected.Noneoftheinspectedwharfshadorhavehadcathodicprotection.Thethicknessmeasurementsofthesteelsheetpilestructureswereultrasonicbydivers.

Theageofthethreeinspectedsheetpilestructuresrangedfrom36to51years.Thedimensionsoftheoriginalsheetpilesectionsareknown.Oneofthequaystructuresislocatedalongariver.Thesalinityatallwharfsvariedfromlowvaluesatthesurfacetoapprox.2%atthebottom(alsointheriveroutflow).

ThemeasuredaveragecorrosionrateswereinthesameorderasthedesignvaluesintheEuropeancode.However,theresultsindicateincreasedcorrosionratesabout1mbelowthemeanwatersurfaceandatthelevelofthepropellersfromtheshipsberthingthemostfrequentedoftheinspectedwharfs,3–6mbelowwatersurface.

Thetolerancesofsteelsheetthicknesses-usuallyintheorderof±6%–areoftenneglectedwheninvestigatingtheremainingthicknessinsteelsheetpiles.Asimplecalculationmodelshowsthatthesheetpilemustbealmost50yearsofagebeforeanaccurateestimationonthecorrosionratecanbemade,consideringthetolerances,ifthetrueoriginalsheetpilethicknessisnotknown.

Introduction

1.1.Background

Alargepartoftheinternationaltradeintheworldistodaytransportedatsea.Thehighervolumeoftransportedgoodsbysea,alongwithlargerfreightvessels,setincreaseddemandsonthequaysandferryberthsinourharbors.Sincetheloadsonthequaydecksincreasewithincreasedhandlingofgoodsandthedeteriorationinformofcorrosionreducesthebearingcapacityofthesheetpilestructure,thiscanleadtoacollapse.Fig.1showssometypicalquaysinindustrialharbors.

ManyofthequaysinSwedishharborshavereachedanageof60-70yearsandhave–accordingtotheoriginaldesigncriteriabasedonassumedcorrosionrates-reachedtheirdesignlifetime.Eventhoughmostofthesequaysandwharfsareactuallystillingoodconditionthereisaneedforinspectionsandpredictionsofremaininglifetimeforthesestructuresinordertoplanforrenovationsandthedesignofnewquays.

Theservicelifetimeofnewsheetpilestructureisusuallyfulfilledbyoversizingthesteelthicknessinthesheetprofile.Knowledgeaboutthecorrosionrateisalsoimportantwhenverifyingtheremainingbearingcapacityofexistingstructures,andestimatingtheremainingservicelifetimeac-cordingtobearingcapacity.Whenoversizingthestructure,acertaincorrosionrate(mm/year)isassumed.Thecorrosionisalsoassumedtobeevenalloverthesurfaceandpitcorrosionorothertypesofunevencorrosionarenotaccountedfor.Inpracticethecorrosionrateisalsoassumedtobealinearfunctionoftimebymostengineers.However,areportfromaEuropeanresearchproject[1]concludesthatthecorrosionratedecreaseswithtime.Thevaluesoncorrosionratesinthisreportarealsogiveninreference[2]andareusedbypracticingengineersinEuropetodaywhendesigningnewsteelstructures.Accordingtothisreport,thecorrosionrateneedstobetreatedstatistically.Itisprobablethatadecreasingcorrosionratewillbefoundiftheprotectivelayersofcorrosionproductsformedarenotdamagedoreroded[3].

Onewaytoestimatethecorrosionrateatacertainsiteistoperformmeasurementsonremaininggoodsthicknessonexistingstructures.Withknowledgeabouttheoriginalsheetpiledimensionsandtheyearofinstallation,itisthenpossibletoestimatetheaveragecorrosionrate.Havingknowledgeabouttheaveragecorrosionrateinindividualharborsgivesbotheconomicandenvironmentalgainsasthiskindofstructurescanthenbeoptimizedbasedontheactualrateoflossofmaterials.

Wheninvestigatingexistingsteelsheetstructures,oneusuallymeasurestheuniformcorrosionrateoveracertainareaofthestructure.Thisis,however,asimplificationofhowthecorrosionprocesstakesplace,sincethereisalsooftenpitcorrosion,whichisconcentratedtosmallareas.Pitcorrosioncangiveverymisleadingresultswhenmeasuringthesteelthicknesswiththecommonlyusedultrasonicgauges.Itisalsocommonlyfoundthatthemostseverecorrosioninsheetpilestructuresappearsinthesplashzone,whilemuchlowercorrosionratesarefoundacoupleofmetersbelowmeanwaterlevel.Thiscouldindicatethepresenceofacceleratedlowwatercorrosion(ALWC)asdescribedinreferences[4]andin[5]amongothers.NoobvioussignsofthepresenceofALWChavehoweverbeenfoundintheinvestigationpresentedinthispaper.Theabovefactorscomplicatetheestimationofthestatusofharborstructures.

1.2.Principlesofdesignofasheetpilequay

Whendesigninganewsheetpilequaythereareseveralaspectstoconsider.Thegeotechnicalconditionsareforexampleofimportanceforthefinaloperationofthestructure.Sometimesitisnecessarytoreplacenaturalweaksoilsbehindthequaywallwithcoarserfillingmaterialwithhigherbearingcapacity.Twootherdesigncriteriaaretheprescribedgroundloadfromtrucksandmobilecranesonthequaydeckbehindthesheetpilewall(cf.Fig.1),andtheprescribedservicelifetimeofthequay.

Oneofthemostcommonquaystructurestodayistheback-anchoredsteelsheetwallasshowninFig.2.Thewallisback-anchoredeitherinbedrockorinanchorplatesinthebackfillingbehindthewall.Thematerialusedinthetierodsissteelandtheanchorplatesareusuallyprecastconcreteslabsorsteelsheetpiles.Thetierodsareprotectedagainstcorrosion,e.g.,byabitumenlining.

ThemostcommonlyusedsheetpilesectionsinharborconstructionsareZ-andU-profiles(Fig.3).Thesheetpilesaredeliveredinsteelgradeswithminimumyieldstrengthbetween240and460MPa.Thethicknessonstandardprofilesvariesbetween6and20mmintheflangesandbetween8and16mmintheweb.Maximumstandardrollinglengthsdependsontheprofiletypechosenandvariesbetween16and33m.

Themostsensitivesection(withrespecttothebendingmomentcapacity)inaback-anchoredsheetpilewalloccursataboutonethirdoftheexcavationdepthfromtheseabottom,asthisiswherethehighestbendingmomentnormallyoccurs(Fig.4).However,thelargestshearforceislocatedattheleveloftheattachmentoftherods.Becauseofthisitisimportanttodetectpotentialweaknessesintheflangesbelowthewatersurfaceandinthewebatthelocationoftheattachmentofthetierods.Ifthesheetpilewallsupportsthedirectverticalloadfromforexampleacrane,thecorrosionofthewholesectionistobeconsideredsincethisloadcasegivesrisetoadditionalcompressionstressesoverthewholesectionalarea.

Whendesigningasheetpilewallforacertainlocation,itwouldbeofinteresttobeabletoconsiderallthefactorsthatinfluencethecorrosionrate:

temperature,salinity,oxygenconcentration,biologicalgrowth,erosionetc.Thisisnotfeasible,butwecanfocusonthemostimportantfactorstooptimizeadesignforacertainlocation.

InSwedenwehaveratherlargevariationsintemperatureovertheyearandthesalinityrangesfromapprox.0.2%atthenortheastcoast,to0.8%atthesouthcoast,toaround3.0%attheuppernorth-westcoast.Thisuniquegradientinsalinity-seennowhereintheworldonthisscale-couldserveasatestgroundforstudiesofhowsalinityinfluencescorrosionrateinharbors.Itiswellknownthattemperatureandsalinity,togetherwithseveralotherphysicalandchemicalparameters,influencesthecorrosionofmildsteelinseawater,seeforexamplereference[6].However,thisstudyisbasedonlaboratorymeasurementsanddoesnottakeforexamplebiologicalgrowthintoaccount;undernaturalexposureithasbeenproposedthattemperatureisthemainvariablegoverningcorrosionofmarinestructures[7].

1.3.Currentdesignvaluesoncorrosionrates

Differentvaluesoncorrosionratesonsteelinmarinestructuresareusedindifferentpartsoftheworld.Informationonrecommendedratesisinsomecasesavailableinnationalorinternationalbuildingcodes.InFig.5recommendedcorrosionratesforsteelinmarineenvironmentsaresummarizedforUSA,Australia,EuropeandSweden.

Itiswell-knownthatthecorrosiononsteelinamarineenvironmentisnotlinear,seeforexamplethemeasurementspresentedinthereportonwhichtheEurocodeisbased[1].Severalmodelsfordescribingthenon-linearityhasbeendevelopedduringtheyears;oneofthemorerefinedmodelsisthatpresentedbyMelchers[7].Thenon-linearbehav

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 起诉状

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2