传感器与检测技术复习总结Word版.docx

上传人:b****1 文档编号:14176233 上传时间:2023-06-21 格式:DOCX 页数:39 大小:104.21KB
下载 相关 举报
传感器与检测技术复习总结Word版.docx_第1页
第1页 / 共39页
传感器与检测技术复习总结Word版.docx_第2页
第2页 / 共39页
传感器与检测技术复习总结Word版.docx_第3页
第3页 / 共39页
传感器与检测技术复习总结Word版.docx_第4页
第4页 / 共39页
传感器与检测技术复习总结Word版.docx_第5页
第5页 / 共39页
传感器与检测技术复习总结Word版.docx_第6页
第6页 / 共39页
传感器与检测技术复习总结Word版.docx_第7页
第7页 / 共39页
传感器与检测技术复习总结Word版.docx_第8页
第8页 / 共39页
传感器与检测技术复习总结Word版.docx_第9页
第9页 / 共39页
传感器与检测技术复习总结Word版.docx_第10页
第10页 / 共39页
传感器与检测技术复习总结Word版.docx_第11页
第11页 / 共39页
传感器与检测技术复习总结Word版.docx_第12页
第12页 / 共39页
传感器与检测技术复习总结Word版.docx_第13页
第13页 / 共39页
传感器与检测技术复习总结Word版.docx_第14页
第14页 / 共39页
传感器与检测技术复习总结Word版.docx_第15页
第15页 / 共39页
传感器与检测技术复习总结Word版.docx_第16页
第16页 / 共39页
传感器与检测技术复习总结Word版.docx_第17页
第17页 / 共39页
传感器与检测技术复习总结Word版.docx_第18页
第18页 / 共39页
传感器与检测技术复习总结Word版.docx_第19页
第19页 / 共39页
传感器与检测技术复习总结Word版.docx_第20页
第20页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

传感器与检测技术复习总结Word版.docx

《传感器与检测技术复习总结Word版.docx》由会员分享,可在线阅读,更多相关《传感器与检测技术复习总结Word版.docx(39页珍藏版)》请在冰点文库上搜索。

传感器与检测技术复习总结Word版.docx

传感器与检测技术复习总结Word版

l.检测系统由哪几部分组成?

说明各部分的作用。

答:

一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。

当然其中还包括电源和传输通道等不可缺少的部分。

传感器与检测技术是研究自动检测系统中的信息提取,信息转换和信息处理的理论和技术为主要内容的一门应用技术学科。

2.什么是传感器?

它由哪几个部分组成?

分别起到什么作用?

解:

传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。

敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。

3.简述正、逆压电效应。

解:

某些电介质在沿一定的方向受到外力的作用变形时,由于内部极化现象同时在两个

表面上产生符号相反的电荷,当外力去掉后,恢复到不带电的状态;而当作用力方向改变时,电荷的极性随着改变。

晶体受力所产生的电荷量与外力的大小成正比。

这种现象称为正压电效应。

反之,如对晶体施加一定变电场,晶体本身将产生机械变形,外电场撤离,变形也随之消失,称为逆压电效应。

4.简述电压放大器和电荷放大器的优缺点。

解:

电压放大器的应用具有一定的应用限制,压电式传感器在与电压放大器配合使用时,连接电缆不能太长。

优点:

微型电压放大电路可以和传感器做成一体,这样这一问题就可以得到克服,使它具有广泛的应用前景。

缺点:

电缆长,电缆电容Cc就大,电缆电容增大必然使传感器的电压灵敏度降低。

电荷放大器的优点:

输出电压Uo与电缆电容Cc无关,且与Q成正比,这是电荷放大器的最大特点。

但电荷放大器的缺点:

价格比电压放大器高,电路较复杂,调整也较困难。

要注意的是,在实际应用中,电压放大器和电荷放大器都应加过载放大保护电路,否则在传感器过载时,会产生过高的输出电压。

6.为什么说压电式传感器只适用于动态测量而不能用于静态测量?

答:

因为压电式传感器是将被测量转换成压电晶体的电荷量,可等效成一定的电容,如被测量为静态时,很难将电荷转换成一定的电压信号输出,故只能用于动态测量。

7.压电式传感器测量电路的作用是什么?

其核心是解决什么问题?

答:

压电式传感器测量电路的作用是将压电晶体产生的电荷转换为电压信号输出,其核心是要解决微弱信号的转换与放大,得到足够强的输出信号。

8.说明霍尔效应的原理?

解:

置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上垂直于电流和磁场方向上的两个面之间产生电动势,这种现象称霍尔效应。

9.磁电式传感器与电感式传感器有何不同?

解:

磁电式传感器是通过磁电作用将被测量(如振动、位移、转速等)转换成电信号的一种传感器。

磁电感应式传感器也称为电动式传感器或感应式传感器。

磁电感应式传感器是利用导体和磁场发生相对运动产生电动式的,它不需要辅助电源就能把被测对象的机械量转换成易于测量的电信号,是有源传感器。

电感式传感器是利用电磁感应原理将被测非电量如位移、压力、流量、、重量、振动等转换成线圈自感量L或互感量M的变化,再由测量电路转换为电压或电流的变化量输出的装置,是无源传感器。

10.霍尔元件在一定电流的控制下,其霍尔电势与哪些因素有关?

解:

根据下面这个公式U=KIBf(L/B)可以得到霍尔电势还与磁感应强度B,KH为霍尔片的灵敏度,霍尔元件的长L和宽度b有关。

11.什么是热电势、接触电势和温差电势?

解:

两种不同的金属A和B构成的闭合回路,如果将它们的两个接点中的一个进行加热,

使其温度为T,而另一点置于室温T0中,则在回路中会产生的电势就叫做热电势。

由于两种不同导体的自由电子密度不同而在接触处形成的电动势叫做接触电势。

温差电势是同一导体的两端因其温度不同而产生的一种热电势。

12.说明热电偶测温的原理及热电偶的基本定律。

解:

热电偶是一种将温度变化转换为电量变化的装置,它利用传感元件的电参数随温度变化的特征来达到测量的目的。

通常将被测温度转换为敏感元件的电阻、磁导或电势等的变化,通过适当的测量电路,就可由电压电流这些电参数的变化来表达所测温度的变化

13.什么是金属导体的热电效应?

试说明热电偶的测温原理。

答:

热电效应就是两种不同的导体或半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,回路中就会产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。

热电偶测温就是利用这种热电效应进行的,将热电偶的热端插入被测物,冷端接进仪表,就能测量温度。

14.试分析金属导体产生接触电动势和温差电动势的原因。

答:

当A和B两种不同材料的导体接触时,由于两者内部单位体积的自由电子数目不同(即电子密度不同),因此,电子在两个方向上扩散的速率就不一样。

现假设导体A的自由电子密度大于导体B的自由电子密度,则导体A扩散到导体B的电子数要比导体B扩散到导体A的电子数大。

所以导体A失去电子带正电荷,导体B得到电子带负电荷,于是,在A、B两导体的接触界面上便形成一个由A到B的电场。

该电场的方向与扩散进行的方向相反,它将引起反方向的电子转移,阻碍扩散作用的继续进行。

当扩散作用与阻碍扩散作用相等时,即自导体A扩散到导体B的自由电子数与在电场作用下自导体B到导体A的自由电子数相等时,便处于一种动态平衡状态。

在这种状态下,A与B两导体的接触处就产生了电位差,称为接触电动势。

对于导体A或B,将其两端分别置于不同的温度场t、t0中(t>t0)。

在导体内部,热端的自由电子具有较大的动能,向冷端移动,从而使热端失去电子带正电荷,冷端得到电子带负电荷。

这样,导体两端便产生了一个由热端指向冷端的静电场。

该电场阻止电子从热端继续跑到冷端并使电子反方向移动,最后也达到了动态平衡状态。

这样,导体两端便产生了电位差,我们将该电位差称为温差电动势。

15.试比较热电阻与热敏电阻的异同。

解:

热电阻将温度转换为电阻值大小的热电式传感器,热电阻传感器是利用导体的电阻值随温度变化而变化的原理进行测温的。

热电阻传感器的测量精度高;有较大的测量范围,它可测量-200~500℃的温度;易于使用在自动测量和远距离测量中。

热电阻由电阻体、保护套和接线盒等部件组成。

其结构形式可根据实际使用制作成各种形状。

热敏电阻是由一些金属氧化物,如钴、锰、镍等的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杆状、垫圈状等各种形状。

热敏电阻具有以下优点:

①电阻温度系数大,灵敏度高;②结构简单;③电阻率高,热惯性小;但它阻值与温度变化呈非线性,且稳定性和互换性较差。

热敏电阻分为直热式和旁热式,旁热式热敏电阻除半导体外还有金属丝绕制的加热器,两者紧紧耦合在一起,互相绝缘,密封于高真空的玻璃壳内。

直热式热敏电阻多由金属氧化物粉料按一定的比例挤压成形,也有用小珠成型工艺、印刷工艺等制成的珠状、薄膜、厚膜、线状、塑料薄膜,经达1273K--1773K高温烧结而成,其引出极一般为银电极。

16.什么是光电效应,依其表现形式如何分类,并予以解释。

解:

光电效应首先把被测量的变化转换成光信号的变化,然后通过光电转换元件变换成电信号,光电效应分为外光电效应和内光电效应两大类:

a)在光线作用下,能使电子逸出物体表面的现象称为外光电效应;

b)受光照的物体导电率1/R发生变化,或产生光生电动势的效应叫内光电效应。

17.光电效应有哪几种?

与之对应的光电元件各有哪些?

答:

光电效应有外光电效应、内光电效应和光生伏特效应三种。

基于外光电效应的光电元件有光电管、光电倍增管等;基于内光电效应的光电元件有光敏电阻、光敏晶体管等;基于光生伏特效应的光电元件有光电池等。

18.什么是光电元件的光谱特性?

答:

光电元件的光谱特性是指入射光照度一定时,光电元件的相对灵敏度随光波波长的变化而变化,一种光电元件只对一定波长范围的人射光敏感,这就是光电元件的光谱特性。

19.光电传感器由哪些部分组成?

答:

光电传感器通常由光源、光学通路和光电元件三部分组成

20.什么是粗大误差?

如何判断测量系统中含有粗大误差?

解:

明显偏离测量结果的误差称为粗大误差,又称疏忽误差。

这类误差是由于测量者疏忽大意或环境条件的突然变化而引起的。

对于粗大误差,首先应设法判断是否存在,然后将其剔除。

21.采用阻值为120Ω灵敏度系数K=2.0的金属电阻应变片和阻值为120Ω的固定电阻组成电桥,供桥电压为4V,并假定负载电阻无穷大。

当应变片上的应变分别为1和1000时,试求单臂、双臂和全桥工作时的输出电压,并比较三种情况下的灵敏度。

解:

单臂时

,所以应变为1时

/V,应变为1000时应为

/V;双臂时

,所以应变为1时

/V,应变为1000时应为

/V;全桥时

,所以应变为1时

/V,应变为1000时应为

/V。

从上面的计算可知:

单臂时灵敏度最低,双臂时为其两倍,全桥时最高,为单臂的四倍。

22.采用阻值R=120Ω灵敏度系数K=2.0的金属电阻应变片与阻值R=120Ω的固定电阻组成电桥,供桥电压为10V。

当应变片应变为1000时,若要使输出电压大于10mV,则可采用何种工作方式(设输出阻抗为无穷大)?

解:

由于不知是何种工作方式,可设为n,故可得:

mV

得n要小于2,故应采用全桥工作方式。

23.试分析电压输出型直流电桥的输入与输出关系。

答:

如图所示,电桥各臂的电阻分别为R1、R2、R3、R4。

U为电桥的直流电源电压。

当四臂电阻R1=R2=R3=R4=R时,称为等臂电桥;当R1=R2=R,R3=R4=R’(R≠R’)时,称为输出对称电桥;当R1=R4=R,R2=R3=R’(R≠R’)时,称为电源对称电桥。

直流电桥电路

当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以可以认为电桥的负载电阻为无穷大,这时电桥以电压的形式输出。

输出电压即为电桥输出端的开路电压,其表达式为

(1)

设电桥为单臂工作状态,即R1为应变片,其余桥臂均为固定电阻。

当R1感受被测量产生电阻增量ΔR1时,由初始平衡条件R1R3=R2R4得

,代入式

(1),则电桥由于ΔR1产生不平衡引起的输出电压为

(2)

对于输出对称电桥,此时R1=R2=R,R3=R4=R’,当R1臂的电阻产生变化ΔR1=ΔR,根据

(2)可得到输出电压为

(3)

对于电源对称电桥,R1=R4=R,R2=R3=R’。

当R1臂产生电阻增量ΔR1=ΔR时,由式

(2)得

(4)

对于等臂电桥R1=R2=R3=R4=R,当R1的电阻增量ΔR1=ΔR时,由式

(2)可得输出电压为

(5)

由上面三种结果可以看出,当桥臂应变片的电阻发生变化时,电桥的输出电压也随着变化。

当ΔR<

还可以看出在桥臂电阻产生相同变化的情况下,等臂电桥以及输出对称电桥的输出电压要比电源对称电桥的输出电压大,即它们的灵敏度要高。

因此在使用中多采用等臂电桥或输出对称电桥。

在实际使用中为了进一步提高灵敏度,常采用等臂电桥,四个被测信号接成两个差动对称的全桥工作形式,R1=R+ΔR,R2=R-ΔR,R3=R+ΔR,R4=R-ΔR,将上述条件代入式

(1)得

(6)

由式(6)看出,由于充分利用了双差动作用,它的输出电压为单臂工作时的4倍,所以大大提高了测量的灵敏度。

24.光敏电阻有哪些重要特性,在工业应用中是如何发挥这些特性的?

答:

光敏电阻是采用半导体材料制作,利用内光电效应工作的光电元件。

它的重要特性是在无光照时阻值非常大,相当于断路,有光照时阻值变得很小,相当于通路。

在工业应用中主要就是通过光的变化来各种电路的控制。

25.试说明图4.12所示的差动相敏检波电路的工作原理。

答:

如图所示,设差动电感传感器的线圈阻抗分别为Z1和Z2。

当衔铁处于中间位置时,Z1=Z2=Z,电桥处于平衡状态,C点电位等于D点地位,电表指示为零。

当衔铁上移,上部线圈阻抗增大,Z1=Z+△Z,则下部线圈阻抗减少,Z2=Z-△Z。

如果输入交流电压为正半周,则A点电位为正,B点电位为负,二极管V1、V4导通,V2、V3截止。

在A-E-C-B支路中,C点电位由于Z1增大而比平衡时的C点电位降低;而在A-F-D-B支中中,D点电位由于Z2的降低而比平衡时D点的电位增高,所以D点电位高于C点电位,直流电压表正向偏转。

如果输入交流电压为负半周,A点电位为负,B点电位为正,二极管V2、V3导通,V1、V4截止,则在A-F-C-B支中中,C点电位由于Z2减少而比平衡时降低(平衡时,输入电压若为负半周,即B点电位为正,A点电位为负,C点相对于B点为负电位,Z2减少时,C点电位更负);而在A-E-D-B支路中,D点电位由于Z1的增加而比平衡时的电位增高,所以仍然是D点电位高于C点电位,电压表正向偏转。

同样可以得出结果:

当衔铁下移时,电压表总是反向偏转,输出为负。

26.为什么说变间隙型电容传感器特性是非线性的?

采取什么措施可改善其非线性特征?

答:

下图为变间隙式电容传感器的原理图。

图中1为固定极板,2为与被测对象相连的活动极板。

当活动极板因被测参数的改变而引起移动时,两极板间的距离d发生变化,从而改变了两极板之间的电容量C。

设极板面积为A,其静态电容量为

,当活动极板移动x后,其电容量为

(1)

当x<

(2)

由式

(1)可以看出电容量C与x不是线性关系,只有当x<

同时还可以看出,要提高灵敏度,应减小起始间隙d过小时。

但当d过小时,又容易引起击穿,同时加工精度要求也高了。

为此,一般是在极板间放置云母、塑料膜等介电常数高的物质来改善这种情况。

在实际应用中,为了提高灵敏度,减小非线性,可采用差动式结构。

1.在磁电式传感器中补偿温度误差的办法是在结构许可的情况下,在传感器的磁铁下设置热磁分路。

加入电磁分路后B=B1+B2,T上升,则B下降,B2下降,但B2下降速度很快,导致B1可保持不变甚至增大。

2、纵向与横向压电效应的相同点和不同点?

相同点:

工作原理都是基于压电效应,都是将机械能转换为电能。

都是在垂直于X轴平面上产生电荷。

不同点:

纵向压电效应产生的电荷与压电片的几何尺寸无关。

横向压电效应产生的电荷与压电片的几何尺寸有关。

它们产生电荷的极性相反。

3.由于环境温度改变引起的电阻值变化的原因有两个:

一是电阻丝温度系数引起的,二是由电阻丝与被测件材料的线膨胀系数的不同引起的。

温度补偿的方法是利用电桥相邻相等两臂同时产生大小相等,符号相同的电阻增量不会破坏电桥平衡的特性来达到补偿。

4.自感:

当一个线圈中电流L变化时,该电流所产生的磁通也随着变化,因而线圈本身产生感应电动势,这种现象叫做自感。

传感器与检测技术知识总结

第一章概述

1:

传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。

一、传感器的组成

2:

传感器一般由敏感元件,转换元件及基本转换电路三部分组成。

①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。

②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。

③基本转换电路是将该电信号转换成便于传输,处理的电量。

二、传感器的分类

1、按被测量对象分类

(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。

(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。

2、传感器按工作机理

(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:

光电式传感器、压电式传感器)。

(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。

3、按被测物理量分类

如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。

5、按传感器能量源分类

(1)无源型:

不需外加电源。

而是将被测量的相关能量转换成电量输出(主要有:

压电式、磁电感应式、热电式、光电式)又称能量转化型;

(2)有原型:

需要外加电源才能输出电量,又称能量控制型(主要有:

电阻式、电容式、电感式、霍尔式)。

6、按输出信号的性质分类

(1)开关型(二值型):

是“1”和“0”或开(ON)和关(OFF);

(2)模拟型:

输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;

(3)数字型:

①计数型:

又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):

输出的信号是数字代码,各码道的状态随输入量变化。

其代码“1”为高电平,“0”为低电平。

三、传感器的特性及主要性能指标

1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。

2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。

表征传感器静态特性的指标有线性度,敏感度,重复性等。

3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。

传感器的动态特性取决于传感器的本身及输入信号的形式。

传感器按其传递,转换信息的形式可分为①接触式环节;②模拟环节;③数字环节。

评定其动态特性:

正弦周期信号、阶跃信号。

4、传感器的主要性能要求是:

1)高精度、低成本。

2)高灵敏度。

3)工作可靠。

4)稳定性好,应长期工作稳定,抗腐蚀性好;5)抗干扰能力强;6)动态性能良好。

7)结构简单、小巧,使用维护方便等;

四、传感检测技术的地位和作用

1、地位:

传感检测技术是一种随着现代科学技术的发展而迅猛发展的技术,是机电一体化系统不可缺少的关键技术之一。

2、作用:

能够进行信息获取、信息转换、信息传递及信息处理等功能。

应用:

计算机集成制造系统(CIMS)、柔性制造系统(FMS)、加工中心(MC)、计算机辅助制造系统(CAM)。

五、基本特性的评价

1、测量范围:

是指传感器在允许误差限内,其被测量值的范围;

量程:

则是指传感器在测量范围内上限值和下限值之差。

2、过载能力:

一般情况下,在不引起传感器的规定性能指标永久改变条件下,传感器允许超过其测量范围的能力。

过载能力通常用允许超过测量上限或下限的被测量值与量程的百分比表示。

3、灵敏度:

是指传感器输出量Y与引起此变化的输入量的变化X之比。

4、灵敏度表示传感器或传感检测系统对被测物理量变化的反应能力。

灵敏度越高越好,因为灵敏度越高,传感器所能感知的变化量越小,即被测量稍有微小变化,传感器就有较大输出。

K值越大,对外界反应越强。

5、反映非线性误差的程度是线性度。

线性度是以一定的拟合直线作基准与校准曲线作比较,用其不一致的最大偏差△Lmax与理论量程输出值Y(=ymax—ymin)的百分比进行计算。

6、稳定性在相同条件,相当长时间内,其输入/输出特性不发生变化的能力,影响传感器稳定性的因素是时间和环境。

7、温度影响其零漂,零漂是指还没输入时,输出值随时间变化而变化。

长期使用会产生蠕变现象。

8、重复性:

是衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标;(分散范围小,重复性越好)

9、精确度:

简称精度,它表示传感器的输出结果与被测量的实际值之间的符合程度,是测量值的精密程度与准确程度的综合反映。

10、分辨力是指传感器能检出被测量的最小变化量。

11、动态特性:

反映了传感器对于随时间变化的动态量的响应特性,传感器的响应特性必须在所测频率范围内努力保持不失真测量条件。

一般地,利用光电效应、压电效应等物性型传感器,响应时间快,工作频率范围宽。

12、环境参数:

指传感器允许使用的工作温度范围以及环境压力、环境振动和冲击等引起的环境压力误差,环境振动误差和冲击误差。

六、传感器的标定与校准

1、标定(计量学称之为定度)是指在明确传感器输入/输出变换关系的前提下,利用某种标准器具产生已知的标准非电量(或其它标准量)输入,确定其输出电量与其输入量之间的过程。

2、校准是指传感器在使用前或使用过程中或搁置一段时间再使用时,必须对其性能参数进行复测或作必要的调整与修正,以确保传感器的测量精度。

3、标定系统的组成:

①被测非电量的标准发生器;②待标定传感器;③它所配接的信号调节显示、记录器等。

4、静态标定是给传感器输入已知不变的标准非电量,测出其输出,给出标定方程和标定常数,计算其灵敏度,线性度,滞差,重复性等传感器的静态指标。

5、传感器的静态标定设备有力标定设备,压力标定设备,温度标定设备等。

6、对设备要求:

①具有足够的精度;②量程范围应与被标定传感器的量程相适应;③性能稳定可靠,使用方便,能适应多种环境。

7、传感器的动态标定的目的是检验测试传感器的动态性能指标。

8、动态标定指标是通过确定其线性工作范围,频率响应函数,幅频特性和相频特性曲线,阶跃响应曲线,来确定传感器的频率响应范围,幅值误差和相位误差,时间常数,阻尼比,固有频率等。

9、常用的标准动态激励设备有激振器、激波管、周期与非周期函数压力发生器;(其中激振器可用于位移、速度、加速度、力、压力传感器的动态标定)

10、传感器与检测技术的发展方向:

⑴开发新型传感器。

⑵传感检测技术的智能化。

⑶复合传感器⑷研究生物感官,开发仿生传感器。

11、开发新型传感器:

①利用新材料制作传感器;②利用新加工技术制作传感器;③采用新原理制作传感器。

12、传感检测技术的智能化:

传感检测系统目前迅速地由模拟式、数字式向智能化方向发展。

功能:

①自动调零和自动校准;②自动量程转换;③自动选择功能;④自动数据处理和误差修正;⑤自动定时测量;⑥自动故障诊断。

第二章位移检测传感器

1、移可分为线位移和角位移两种,测量位移常用的方法有:

机械法,光测法,电测法。

2、位移传感器的分类:

参量型位移传感器,发电型位移传感器,大位移传感器。

一、参量型位移传感器

1、参量位移传感器的工作原理:

将被测物理量转化为电参数,即电阻,电容或电感等。

2、电阻式位移传感器的电阻值取决于材料的几何尺寸和物理特征,即R=pL/S

(1)电位计由骨架、电阻元件、电刷等组成;

(2)电位计优点:

结构简单,输出信号大,性能稳定,并容易实现任意函数关系,缺点:

是要求输入量大,电刷与电阻元件之间有干摩擦,容易磨损,产生噪声干扰。

3、⑴线性电位计的空载特性:

Rx=RX/L=KrX(Kr——电位计的电阻灵敏度)。

电位计输出空载电压为Uo=UiX/L=KuX(Ku——电位计的电压灵敏度)

⑵非线性电位计空载特性:

其电阻灵敏度Kr=DR/Dx,电压灵敏度Ku=Duo/Dx

4、电阻应变式位移传感器:

是将被测位移引起的应变元件产生的应变,经后续电路变换成电信号,从而测出被测位移。

5、电容式位移传感器:

是利用电容量的变化来测量线位移或角位移的装置。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2