边界条件.docx

上传人:b****1 文档编号:14191930 上传时间:2023-06-21 格式:DOCX 页数:19 大小:29.07KB
下载 相关 举报
边界条件.docx_第1页
第1页 / 共19页
边界条件.docx_第2页
第2页 / 共19页
边界条件.docx_第3页
第3页 / 共19页
边界条件.docx_第4页
第4页 / 共19页
边界条件.docx_第5页
第5页 / 共19页
边界条件.docx_第6页
第6页 / 共19页
边界条件.docx_第7页
第7页 / 共19页
边界条件.docx_第8页
第8页 / 共19页
边界条件.docx_第9页
第9页 / 共19页
边界条件.docx_第10页
第10页 / 共19页
边界条件.docx_第11页
第11页 / 共19页
边界条件.docx_第12页
第12页 / 共19页
边界条件.docx_第13页
第13页 / 共19页
边界条件.docx_第14页
第14页 / 共19页
边界条件.docx_第15页
第15页 / 共19页
边界条件.docx_第16页
第16页 / 共19页
边界条件.docx_第17页
第17页 / 共19页
边界条件.docx_第18页
第18页 / 共19页
边界条件.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

边界条件.docx

《边界条件.docx》由会员分享,可在线阅读,更多相关《边界条件.docx(19页珍藏版)》请在冰点文库上搜索。

边界条件.docx

边界条件

Midas各种边界条件比较

Midas的提供的边界条件非常多,而且各有用途,初学Midas的朋友们都想看看到底不同边界条件之间有什么区别,下面在Midas帮助文件选取下来的,只是作一个比较,各种边界条件的具体使用参照MIDAS帮助文件。

1.定义一般弹性支承类型SDx-SDy

整体坐标系X轴方向和Y轴方向(或已定义的节点局部坐标系x方向和y方向)的相关弹性支承刚度。

注一般弹性支承通常用于反映桩的支承刚度,结构分析时可以考虑与各个自由度有关的桩支承刚度。

在典型的建筑结构中,分析模型不包括桩基础。

而是假定在基础底面或桩帽处存在弹性边界。

下面的通用刚度给出了桩单元的实际刚度。

对斜桩,用节点局部坐标轴计算斜向的刚度。

2.一般弹性支承

分配定义的一般弹性支撑类型,或输入节点通用刚度矩阵(6×6)。

其中包括选定的节点在整体坐标系或节点局部坐标系内各自由度之间相关的刚度,也可以替换或删除先前定义的弹性支承刚度SDxSDySDzSRxSRySRz注:

在一般弹性支承类型对话框中,上述6个弹性支承刚度值只表示6x6阶刚度矩阵中的6个对角线刚度值。

实际分配给节点的刚度值为6x6阶刚度。

3.面弹性支承

输入平面或实体单元单位支承面上的弹簧刚度形成弹性支承。

并可同时形成弹性连接的单元。

该功能主要用于在基础或地下结构分析中考虑地基的弹性支承条件。

弹性连接长度:

弹性连接单元的长度。

该数据对分析结果没有影响,只是为在分析中定义一个内部矢量。

只受拉,只受压:

选中选项指定弹性连接为只受拉或只受压单元。

4.弹性连接

形成或删除弹性连接。

由用户定义弹性连接及其弹性连接的两个节点。

SDxSDySDzSRxSRySRz。

5.一般连接特性值

建立、修改或删除非线性连接的特性值。

一般连接功能应用于建立减隔振装置、只受拉/受压单元、塑性铰、弹性支撑等模型。

一般连接可利用弹簧的特性,赋予线性或非线性的特性。

一般连接的作用类型分为单元类型和内力类型。

单元类型一般连接在进行分析过程中,用更新单元刚度矩阵直接反映单元的非线性。

内力类型的一般连接不更新单元刚度矩阵,而是根据非线性的特性计算出来的内力置换成外部荷载,间接的考虑非线性。

单元类型的一般连接提供的类型有弹簧、线性阻尼器、弹簧和线性阻尼器3种类型的连接单元。

内力类型的一般连接提供的类型有粘弹性消能器(ViscoelasticDamper)、间隙(Gap)、钩(Hook)、滞后系统(HystereticSystem)、铅芯橡胶支承隔震装置(LeadRubberBearingIsolator)、摩擦摆隔震装置(FrictionPendulumSystemIsolator)等六种类型的连接单元。

6.一般连接

添加或删除一般连接。

由用户定义一般连接及其一般连接的两个节点。

一般连接特性值:

选择非线性连接的特性。

当需要建立或编辑非线性连接的特性值时,可以点击右面的,将弹出非线性连接特性值对话框。

7.释放梁端约束

输入梁两端的梁端释放条件(铰接,滑动,滚动,节点和部分固定),或替换或删除先前输入的梁端释放条件。

8.设定梁端部刚域

定义GCS或梁单元局部坐标系下梁两端的刚域长度或考虑节点偏心。

该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在主菜单中的模型>边界条件>刚域效果只能考虑梁柱直交时的效果。

9.刚性连接

强制某些节点(从属节点)的自由度从属于某节点(主节点)。

包括从属节点的刚度分量在内的从属节点的所有属性(节点荷载或节点质量)均将转换为主节点的等效分量。

10.刚域效果

自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

11.有效宽度系数

在计算梁截面应力时,对截面强轴的惯性矩(Iy)的调整系数。

该功能主要使用于预应力箱型梁的剪滞效应(shearlag)分析,即考虑上下板的有效宽度(受压区)后,对截面惯性矩进行相应的调整,最后进行应力计算。

该功能对内力计算没有影响。

我建模的时候用节点支撑模拟每根桩基的边界条件,根据地质资料计算出每个节点的值输入,计算结果吻合桩的变形形状及下沉量。

节点弹性连接来模拟实际接触,但建模时因为把体简化成线而脱开的节点。

也可以模拟梁的横向联系。

刚性连接(其他程序叫主从节点)模拟橡胶支座等边界条件比较好。

我在实用过程中发现同一个节点主从2次以上要报错,还有就是主从后在下一施工阶段钝化了,运行的时候要报错。

以上是我最近使用的一点感受。

望各位指教!

[midas]midas弹性连接与主从约束的区别

两者各有千秋——

相同点:

两者都可以作为刚臂,都考虑附加弯矩作用。

不同点:

弹性连接刚性——连接两点的的所有自由度耦合,相当于100x100m断面的钢梁的刚度;可以在任何分析中使用,没有限制条件。

!

O"V)v(c!

F)d8^;^主从约束刚性连接:

注意区分主、从关系,刚度为无限大,可以指定某个和某几个自由度的耦合,可以在任何分析中使用,但在施工阶段分析中只能激活,不能钝化。

/j(T2H/m7R9F!

T任何弹性连接实质上都是一种单元,因此其刚度也会影响结构的整体刚度,所以在用一般弹性连接模拟支座时建议使用主从刚性连接(具体模拟方法我在本论坛上发了贴子)处理主梁和支座间的连接关系。

如果仅以节点支承(一般支承或弹性支承)模拟支座,那么只能用弹性连接刚性来处理主梁和支座间的刚臂连接。

总之在具体应用上,依据具体情况做选择。

MIDAS多支座模拟注意事项:

单支座模拟时,我们在支座实际位置建立节点,定义约束内容,然后用刚性弹簧(弹性连接的刚性类型)连接主梁节点和支座节点。

但在模拟多支座时,尤其是支座数量多于2个时,这样的模拟方法就不对了,会出现靠近主梁的支反力特别大的情况。

多支座时正确的模拟方法如下:

1、要求模拟出支座的高度情况,在支座底部采用一般支承进行全约束(D-ALL,R-ALL);2、用一般弹性连接模拟支座(注意弹性连接的刚度是按照弹簧的局部坐标输入,输入支座的各个自由度的实际刚度);/3、主梁节点为主节点,各支座顶部节点为丛属节点建立主从约束刚性连接。

4、额外的操作:

对于弯桥建模时,支座的约束方向通常是沿桥的径向和切向,可以通过修改弹性连接的beta角来实现。

MIDAS梁格法建模注意事项

在梁桥中会经常会使用梁格法建立模型,因为不同的设计人员对横向联系的模拟(虚梁的设置)不尽相同,所以分析结果会略有差异。

下面就一些注意事项供设计人员参考。

1.将多室箱梁分割为梁格时,注意纵梁的中和轴位置应尽量一致。

2.每跨内的虚拟的横向联系梁数量不应过少(划分为1.5m左右一个在精度上应能满足要求)。

3.虚拟的横向联系梁之间尽量要设为铰接(可将纵梁之间的虚拟横梁分割为两个单元,将其中一个释放梁端约束)。

4.虚拟的横向联系梁的刚度可按一字或二字形矩形截面计算。

5.虚拟的横向联系梁的重量应设为零(可在截面刚度调整系数中调整)。

6.当虚拟的横向联系梁悬挑出边梁外时,应设置虚拟的边纵梁(为了准确地计算自振周期和分配荷载),此时可将虚拟的边纵梁作为一个梁格进行划分。

7.定义移动荷载的车道时,应尽量选择按“横向联系梁”方法分布移动荷载,此时应将所有的横向联系梁定义为一个结构组,并在定义车道时选择该结构组。

8.定义车道时最好定义两次车道,一次按横向偏载定义,一次按横向中间向两边定义。

定义移动荷载工况时可定义偏载和居中两个工况(荷载组合中会自动找到包络结果)。

9.定义支座时尽量遵循一排支座中只约束其中一个支座在X,Y方向的自由度的原则(否则温度荷载结果会偏大)。

另外,多支座时一般可不约束旋转自由度。

10.注意输入梁截面温度荷载时宽度B的取值为实际翼缘宽度(或腹板宽度之和)。

11.弯桥时应注意支座的约束方向(设置节点局部坐标系)。

PartI.部分使用说明

1.定义移动荷载的步骤

l在主菜单的荷载>移动荷载分析数据>车辆中选择标准车辆或自定义车辆。

l对于人群移动荷载,按用户定义方式中的汽车类型中的车道荷载定义成线荷载加载(如将规范中的荷载0.5tonf/m**2乘以车道宽3m,输入1.5tonf/m)。

定义人群移动荷载时,一定要输入Qm和Qq,并输入相同的值。

集中荷载输入0。

l布置车道或车道面(梁单元模型选择定义车道,板单元模型选择定义车道面),人群荷载的步行道也应定义为一个车道或车道面。

l定义车辆组。

该项为选项,仅用于不同车道允许加载不同车辆荷载的特殊情况中。

l定义移动荷载工况。

例如可将车道荷载定义为工况-1,车辆荷载定义为工况-2。

在定义移动荷载工况对话框中的子荷载工况中,需要定义各车辆要加载的车道。

例如:

用户定义了8个车道,其中4个为左侧偏载、4个为右侧偏载,此时可定义两个子荷载工况,并选择“单独”,表示分别单独计算,程序自动找出最大值。

在定义子荷载工况时,如果在“可以加载的最少车道数”和“可以加载的最大车道数”中分别输入1和4,则表示分别计算1、2、3、4种横向车辆布置的情况(15种情况)。

布置车辆选择车道时,不能包含前面定义的人群的步行道。

l定义移动荷载工况时,如果有必要将人群移动荷载与车辆的移动荷载进行组合时,需要在定义移动荷载工况对话框中的子荷载工况中,分别定义人群移动荷载子荷载工况(只能选择步道)和车辆的移动荷载子荷载工况,然后选择“组合”。

2.关于移动荷载中车道和车道面的定义

当使用板单元建立模型时l

a.程序对城市桥梁的车道荷载及人群荷载默认为做影响面分析,其他荷载(公路荷载和铁路荷载)做影响线分析。

b.只能使用车道面定义车的行走路线。

对于城市桥梁的车道荷载及人群荷载以外的荷载,输入的车道面宽度不起作用,按线荷载或集中荷载加载在车道上。

c.对于城市桥梁的车道荷载及人群荷载,在程序内部,自动将输入的荷载除以在”车道面”中定义的车道宽后,按面荷载加载在车道上。

d.车道宽度应按规范规定输入一个车辆宽度,如城市车道荷载应输入3m,人群荷载可输入实际步道宽。

当使用梁单元建立模型时l

a.程序默认为做影响线分析。

b.只能使用车道定义车的行走路线。

c.对于城市桥梁的车道荷载,目前版本按线荷载加载在车道上。

d.对于人群移动荷载,按用户定义方式中的汽车类型中的车道荷载,定义成线荷载加载。

3.挂车荷载布置中应注意的问题

l布置挂车荷载时,需要在主菜单>移动荷载分析数据>移动荷载工况中点击„添加‟,在弹出的对话框中再点击„添加‟,在弹出的„子荷载工况‟对话框中的„可以加载的最少车道数‟和„可以加载的最大车道数‟均输入1。

4.移动荷载的横向布置

l移动荷载的横向布置,在板型桥梁、箱型暗渠等建模助手中由程序自动从左到右,从右到左进行布置,并输出包络结果。

l对于用户手动建立的桥梁,需要由用户手动布置车道。

将布置的一系列车道布置车辆后定义为一种荷载工况,将另一些车道布置车辆后定义为另一种荷载工况,对不同的荷载工况分别做分析后,在荷载组合中定义包络组合。

5.使用板单元做移动荷载分析时,看不到应力结果

l在主菜单的分析>移动荷载分析控制数据>单元输出位置中选择板单元的„计算应力‟

6.使用梁单元做移动荷载分析时,看不到组合应力结果

l在主菜单的分析>移动荷载分析控制数据>单元输出位置中选择杆系单元的„计算组合应力‟

7.关于实体单元的内力输出

l在结果>局部方向内力的合力中选择处于同一个平面内的一些实体单元的面,程序将输出这些面上的合力。

8.弯桥支座的模拟

为了确定约束方向,首先定义支座节点处的节点局部坐标系,且可以输出节点局部坐标系方向的反力结果。

l

l按双支座模拟时,推荐在支座位置沿竖向建立两个弹性连接单元,单元下部固结,上部节点间设置刚臂。

按单支座模拟时,推荐将支座扭矩方向约束。

根据计算得到的扭矩和支座间距,手算支座反力。

9.刚臂的定义

在主菜单中选择模型l>边界条件>刚性连接,定义主从节点间相关关系。

10.主从节点能否重复定义,既一个节点能否既从属于一个节点又从属于另一节点

l理论上可以,既该节点的不同自由度分别从属于不同节点。

11.关于斜拉桥、悬索桥及使用了非线性单元的桥梁,做移动荷载分析的问题

l移动荷载分析是线性分析,因为程序内部计算时将使用荷载的组合,模型中不能存在非线性单元。

l当做斜拉桥、悬索桥的移动荷载分析时,应事先计算出桥梁在自重平衡下的索和吊杆的拉力,并将其作为初始内力加载在单元上,然后将非线性单元如索单元修改为桁架单元后做移动荷载分析。

12.温度荷载

l系统温度

输入季节温差。

初始温度对结果没有影响。

当需要分别计算成桥前后的温差变化和成桥后年度的温差变化的影响时,可定义两个荷载工况名称,分别输入不同的系统温度温差,程序将分别计算不同温差的影响。

l节点温度

主要用于输入沿单元长度方向(如梁长度方向)的温差。

l单元温度

主要用于输入各单元的温升和温降,是对节点温度的补充。

例如,用于地下结构的上板和侧墙的单元的温差不同时。

l温度梯度

主要用于计算温度梯度引起的弯矩,其中高度数值没有具体物理概念,其中温差和高度的比值相等时,即梯度相等时,计算结果相同。

l梁截面温度

主要用于定义梁上折线型的温度梯度变化。

13.施工阶段定义中,边界条件的激活和钝化中,„变形前‟与„变形后‟的意义

l该功能仅适用于使用„一般支承‟定义的边界条件

表示该支承点的位置。

l

14.关于剪力滞效应

在主菜单中选择模型l>边界条件>有效宽度系数。

此处对Iy的调整仅适用于应力验算中。

l在模型>材料和截面特性>截面特性增减系数中的修改则适用于所有内力计算中。

注意在该项中的增减系数并不是为了考虑剪力滞效应,该项一般应用于建筑结构的剪力墙连梁的刚度折减上。

15.二期恒载的输入

可以在主菜单中选择荷载l>压力荷载,按均布荷载输入。

16.配重的输入

l可以按外部荷载输入,然后在模型>质量>将荷载转换为质量中将其转换为质量后,参与结构自振周期的计算中。

l也可以直接按节点质量输入(模型>质量>节点质量),此时应将配重除以重力加速度。

17.摩擦支座的问题

在主菜单的模型l>边界条件>非线性连接中选择摩擦摆型支座

18.平面荷载的布置问题

l首先定义平面荷载,其中的x1~x4,y1~y2是相对坐标,即相对于分配荷载对话框中原点的相对坐标。

19.关于荷载组合

l在结果>荷载组合中选择„自动生成‟,在弹出的对话框中选择相应的国家规范,程序将根据规范规定自动生成荷载组合。

用户可以修改相应的荷载安全系数。

20.关于荷载、荷载类型、荷载工况、荷载组合、荷载组的概念

l荷载:

指某具体的荷载,如自重、节点荷载、梁单元荷载、预应力等。

其特点是具有荷载大小和作用方向。

l荷载类型:

只荷载所属的类型,如恒荷载类型、活荷载类型、预应力荷载类型等,该类型将用于自动生成荷载组合上,程序根据给荷载工况定义的荷载类型,自动赋予荷载安全系数后进行荷载组合。

l荷载工况:

是查看分析结果的最小荷载单位,也是荷载组合中最小单位。

一个荷载工况中可以有多个荷载,如同一荷载工况中可以有节点荷载、均布荷载等;一个荷载工况只能定义为一种荷载类型,如某荷载工况被定义为恒荷载后,不能再定义为活荷载;不同的荷载工况可以属于同一种荷载类型。

l荷载组合:

将荷载工况按一定的系数组合起来,也是查看分析结果的单位。

在MIDAS软件中,当模型中无非线性单元,且所做分析为线性分析时,荷载组合可在后处理中进行,即运行分析后再做组合。

当模型中有非线性单元,程序做非线性分析时,需在分析前建立荷载组合,然后将其定义为一个新的荷载工况后再做分析。

l荷载组:

荷载组的概念仅使用于施工阶段分析中。

在做施工阶段分析时,某一施工阶段上的荷载均被定义为一个荷载组,施工阶段中荷载的变化,均是以组单位进行变化的。

注:

a、b、n的荷载类型相同,c、d、m的荷载类型相同,e、f、l的荷载类型相同。

荷载工况1、荷载工况2、荷载工况N的荷载类型可以相同,也可以不相同。

图1.非施工阶段分析时

图2.施工阶段分析时

21.关于施工阶段分析时,自动生成的CS:

恒荷载、CS:

施工荷载、CS:

合计

l做施工阶段分析时程序内部将在施工阶段加载的所有荷载,在分析结果中会将其归结为CS:

恒荷载。

l如果用户想查看如施工过程中某些荷载(如吊车荷载)对结构的影响的话,则需在分析之前,在分析/施工阶段分析控制数据对话框的下端部分,将该荷载从分析结果中的CS:

恒荷载中分离出来。

被分离出来的荷载将被归结为CS:

施工荷载。

l分析结果中的CS:

合计,为CS:

恒荷载、CS:

施工荷载及钢束、收缩、徐变等荷载的合计。

但不包括收缩和徐变的一次应力,因为它们是施工过程中发生变化的。

l将荷载类型定义为施工阶段荷载(CS)的话,则该荷载只在施工阶段分析中会被使用。

对于完成施工阶段分析后的成桥模型,该荷载不会发生作用,不论是否被激活。

22.关于施工阶段分析时,自动生成的postCS阶段

lpostCS阶段的模型和边界条件与最终施工阶段的相同,postCS阶段的荷载为定义为非施工阶段荷载类型(在荷载工况中定义荷载类型)的所有荷载工况中的荷载,包括施工阶段中没有使用过的荷载。

l对于与其它成桥后作用的荷载进行荷载组合,须在postCS中进行。

在生成荷载组合时将CS:

合计定义为如LCB1的话,则postCS中的LCB1的结构状态即为施工阶段完了后的成桥状态。

23.关于Tresca应力和有效应力(von-Mises应力)

l混凝土的破坏准则有最大拉应力理论、最大拉应变理论、最大剪应力(Tresca应力)理论、von-Mises应力理论等很多理论。

l最大剪应力(Tresca应力)理论是指材料承受的最大剪应力达到一定限值时发生屈服。

lvon-Mises应力是指有效应力达到一定限值时材料发生屈服(圆柱面破坏)。

MIDAS软件输出的von-Mises应力是有效应力。

24.非施工阶段分析中,收缩和徐变的计算

l目前版本中不支持该功能,但用户可建立一个施工阶段,将施工阶段的给出1500天,即可查看收缩和徐变。

但需要将该施工阶段内分割成5个子步骤,以便于准确反应老化效果。

25.收缩和徐变曲线中开始加载时间、结束加载时间、开始收缩时的混凝土材龄的意义

l开始加载时间、结束加载时间没有实际意义,仅用于图形显示范围。

l当开始加载时间不变、仅修改结束加载时间时,图形上开始加载时间位置数值发生变化的原因为左侧表格中的第一个起始数据为„开始加载时间+(结束加载时间-开始加载时间)/步骤数‟

l开始收缩时的混凝土材龄表示从浇筑混凝土开始到拆模板混凝土开始接触大气的的时间。

需要注意的是,施工阶段分析时需要定义构件的初始材龄,开始收缩时的混凝土材龄不应大于构件的该初始材龄。

26.计算自振周期的问题

l首先要在主菜单的模型>结构类型中选择将结构的自重转换为X、Y、Z方向,当只要查看竖向自振周期时,选择转换为Z方向。

l然后在分析>特征值分析控制中填写相应数据。

27.地震反应谱计算中模态数量的选择

l规范规定反应谱分析中振型参与质量应达到90%以上,在MIDAS软件中的主菜单>结果>分析结果表格>振型形状中提供振型参与质量信息。

在分析结束后,用户应确认振型参与质量是否达到了90%,当没有达到90%时,应在分析>特征值分析控制中增加模态数量。

28.关于屈曲分析

目前MIDAS软件中的屈曲分析是线性屈曲分析,可进行屈曲分析的单元有梁单元、桁架单元、板单元等。

l

l首先要在主菜单的模型>结构类型中选择将结构的自重转换为X、Y、Z方向

l然后在分析>特征值分析控制中选择相应荷载工况和模态数量。

29.关于施工阶段分析中自重的输入

l首先要定义自重所属的结构组名称(如定义为自重组)。

l然后在荷载>自重中定义定义自重(在Z中输入系数-1),并在荷载组中选项中选择相应荷载组名称(如自重组),该项必须要选!

l然后在荷载>施工阶段分析数据>定义施工阶段中定义第一个施工阶段时,将自重的荷载组激活。

以后阶段中每当有新单元组增加时,程序都会自动计算自重。

即自重只需在第一个施工阶段激活一次,且必须在第一个施工阶段激活一次。

30.关于支座沉降

lMIDAS中有两种方式定义支座沉降,一种是在荷载>支座强制位移中定义,一种是在荷载>支座沉降分析数据中定义。

l在荷载>支座强制位移中定义时,可以定义沿各方向的沉降量。

同时以两个荷载工况定义两个支座的沉降时,这两个工况可以互相组合。

当已知某支座的沉降时,可采用此方法定义支座沉降。

l当仅考虑支座沿整体坐标系Z轴方向的沉降时,推荐在荷载>支座沉降分析数据中定义支座沉降。

当不能缺确切知道某支座发生沉降时,既用户欲计算所有支座不同时发生沉降或发生不同沉降量时,可采用此方法。

l在荷载>支座沉降分析数据中定义沉降例题:

某工程有四个桥墩,每个桥墩都要考虑1cm的沉降量,用户欲计算最不利的沉降组合结果时,a.在荷载>支座强制位移>支座沉降组中将每个支座的沉降均定义为一沉降组(S1~S4);b.然后在荷载>支座沉降荷载工况中随便定义一个支座沉降荷载工况名称(如:

SSS);并将所有支座沉降组(S1~S4)到右侧列表中,然后在Smin中输入1,在Smax中输入3。

然后进行分析,程序将自动生成SMax:

SSS、SMin:

SSS、Small:

SSS三个荷载工况。

其中SMax:

SSS输出的是所有沉降可能组合中,各单元的最大反应;SMin:

SSS输出的是所有沉降可能组合中,各单元的最小反应;SMall:

SSS输出的是所有沉降可能组合中,各单元的最大反应和最小反应的绝对值中的较大值。

在这里需要注意的是,各单元的最大反应(比如弯矩)并不是发生在同一种沉降组合中,在这里输出的是所有各单元在各种沉降组合中产生的最不利结果。

PartII.常见问题

1)问:

在MIDAS软件中施工阶段分析采用何种模型?

答:

施工阶段模拟中的模型概念有两种,一种是累加模型概念,一种是独立模型概念。

累加模型的概念就是下一个阶段模型继承了上一个阶段模型的内容(位移、内力等),累加模型比较容易解决收缩和徐变问题。

但较难解决非线性问题。

举例说,当下一个施工阶段荷载加载时,上一个阶段已发生位移的模型容易发生挠动时(比如悬索桥模型),上一阶段的荷载也应同时参与该施工阶段的非线性分析中,而此时累加模型很难解决该类问题。

独立模型的概念就是每施工阶段均按当前施工阶段的所有荷载、当前模型进行分析,然后作为当前施工阶段的分析结果,两个施工阶段分析结果的差作为累加结果。

此类模型较容易使用于大位移等非线性分析中。

但不能正确反应收缩和徐变。

目前MIDAS的施工阶段模拟实际上隐含了这两种模型的选择。

在分析>施工阶段分析控制中,当选择"考虑非线性分析"选项时,程序按独立模型计算,当没有选择该项时,按累加模型分析。

至于具体的工程,应选择哪种模型,应由用户判断。

MIDAS软件目前正考虑升级的部分:

1.将施工阶段采用模型,由隐式改为用户选择。

这不是单纯的改文字。

2.在帮助文件中尽量对各种结构的施工阶段模拟提供分析模式。

2)问:

在MIDAS软件中静力荷载工况定义中的类型中包括了所有的荷载,为什么菜单下面还有移动荷载工况和支座荷载工况等内容呢?

答:

静力荷载工况中的荷载类型正如它的名字为"静力"类型。

当用户需要分析移动荷载处于某一个位置时的情况,即手动决定移动荷载位置后,再做静力分析时,需要在此定义相应的移动荷载工况,也为后处理中自动生成荷载组合做准备。

支座沉降分析数据中的支座荷载工况其实与移动荷载的概念差不多。

举例说明,当有9个支座时,每个支座都可能发生沉降时,该功能可以由自动计算所有可能的沉降组合,因此提供的也是相当于"动态"的结果。

所以

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 节日庆典

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2