棒料抓装机械手的设计doc.docx

上传人:b****5 文档编号:14409977 上传时间:2023-06-23 格式:DOCX 页数:21 大小:33.26KB
下载 相关 举报
棒料抓装机械手的设计doc.docx_第1页
第1页 / 共21页
棒料抓装机械手的设计doc.docx_第2页
第2页 / 共21页
棒料抓装机械手的设计doc.docx_第3页
第3页 / 共21页
棒料抓装机械手的设计doc.docx_第4页
第4页 / 共21页
棒料抓装机械手的设计doc.docx_第5页
第5页 / 共21页
棒料抓装机械手的设计doc.docx_第6页
第6页 / 共21页
棒料抓装机械手的设计doc.docx_第7页
第7页 / 共21页
棒料抓装机械手的设计doc.docx_第8页
第8页 / 共21页
棒料抓装机械手的设计doc.docx_第9页
第9页 / 共21页
棒料抓装机械手的设计doc.docx_第10页
第10页 / 共21页
棒料抓装机械手的设计doc.docx_第11页
第11页 / 共21页
棒料抓装机械手的设计doc.docx_第12页
第12页 / 共21页
棒料抓装机械手的设计doc.docx_第13页
第13页 / 共21页
棒料抓装机械手的设计doc.docx_第14页
第14页 / 共21页
棒料抓装机械手的设计doc.docx_第15页
第15页 / 共21页
棒料抓装机械手的设计doc.docx_第16页
第16页 / 共21页
棒料抓装机械手的设计doc.docx_第17页
第17页 / 共21页
棒料抓装机械手的设计doc.docx_第18页
第18页 / 共21页
棒料抓装机械手的设计doc.docx_第19页
第19页 / 共21页
棒料抓装机械手的设计doc.docx_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

棒料抓装机械手的设计doc.docx

《棒料抓装机械手的设计doc.docx》由会员分享,可在线阅读,更多相关《棒料抓装机械手的设计doc.docx(21页珍藏版)》请在冰点文库上搜索。

棒料抓装机械手的设计doc.docx

棒料抓装机械手的设计doc

棒料抓装机械手的设计

毕业设计设计题目棒料抓装机械手的设计学生姓名学号专业班级指导教师院系名称目录中文摘要3英文摘要4第一章绪论51.1工业机械手51.1.1工业机械手概述51.1.2选题背景61.1.3设计目的61.2机械手的组成和分类71.2.1机械手的组成71.2.2机械手的分类101.3国内外发展状况121.4课题的主要要求13第二章手部结构142.1手部结构设计142.1.1概述142.2手部计算162.2.1驱动力的计算162.2.2夹紧缸驱动力计算182.3两支点回转式钳爪的定位误差的分析18第三章腕部结构193.1腕部的结构设计193.1.1概述193.1.2腕部的结构形式203.2手腕驱动力矩的计算20第四章臂部的结构224.1臂部设计的基本要求224.2手臂的典型机构以及结构的选择234.2.1手臂的典型运动机构234.2.2手臂运动机构的选择234.3手臂直线运动的驱动力计算234.3.1手臂摩擦力的分析与计算234.3.2手臂惯性力的计算254.3.3密封装置的摩擦阻力254.4液压缸工作压力和结构的确定26第五章机身的设计计算295.1机身的整体设计295.2机身回转机构的设计计算305.3机身升降机构的计算335.3.1手臂偏重力矩的计算335.3.2升降不自锁条件分析计算345.3.3手臂做升降运动的液压缸驱动力的计算345.3.4油缸结构尺寸的确定35第六章液压系统376.1液压系统的设计376.1.1液压系统简介376.1.2液压系统的组成376.2机械手液压系统的控制回路376.2.1压力控制回路376.2.2速度控制回路386.2.3方向控制回路386.3机械手的液压传动系统396.3.1上料机械手的动作顺序396.3.2自动上料机械手液压系统原理介绍396.4机械手液压系统的简单计算416.4.1双作用单杆活塞油缸426.4.2油泵的选择456.4.3确定油泵电动机功率N46第七章PLC控制回路的设计477.1电磁铁动作顺序477.2根据机械手的动作顺序表487.3PLC与现场器件的实际连接图497.4梯形图507.5指令程序52结论56致谢57参考文献58棒料抓装机械手的设计摘要当今社会信息化、科技化时代到来,机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,可以通过编程控制及检测反馈技术的成熟实现无人化操作,是当代研究十分活跃,应用日益广泛的领域。

机器人应用情况,是一个国家工业自动化水平的重要标志。

机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设备.机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。

机械手的发展可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。

关键词减轻劳动强度、提高生产率、适应恶劣环境、自动化、产品质量高。

THEDESIGNOFMANIPULATORFORTHECLAVATEMATERALGRABBEDTHEDEVICEAbstractWiththedevelopmentofinformationandscience尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。

因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用.机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。

随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。

由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

1.1.2选题背景机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。

近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。

机械手能代替人类完成危险、重复枯燥的工作,减轻人类劳动强度,提高劳动生产力。

机械手越来越广泛的得到了应用,在机械行业中它可用于零部件组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更普遍。

目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。

把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,它适应于中、小批量生产,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。

当工件变更时,柔性生产系统很容易改变,有利于企业不断更新适销对路的品种,提高产品质量,更好地适应市场竞争的需要。

而目前我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。

因此,进行机械手的研究设计是非常有意义的。

1.1.3设计目的本设计通过对机械设计制造及其自动化专业夜大2.5年的所学知识进行整合,完成一个通用形式的普通圆棒料搬运的机械手的设计,能够比较好地体现机械设计制造及其自动化专业毕业生的理论研究水平,实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,能够实现理论和实践的有机结合。

目前,在国内很多工厂的生产中圆棒料的搬运摆放仍由人工完成,劳动强度大、生产效率低。

为了提高生产加工的工作效率,降低成本,并使生产线发展成为柔性制造系统,适应现代自动化大生产,针对具体生产工艺,利用机器人技术,设计用一台装卸机械手代替人工工作,以提高劳动生产率。

随着科学技术的发展,机械手也越来越多的地被应用。

在机械工业中,铸、焊、铆、冲、压、热处理、机械加工、装配、检验、喷漆、电镀等工种都有应用的实理。

其他部门,如轻工业、建筑业、国防工业等工作中也均有所应用。

在机械工业中,应用机械手的意义可以概括如下

一、以提高生产过程中的自动化程度应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。

二、以改善劳动条件,避免人身事故在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。

在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。

三、可以减轻人力,并便于有节奏的生产应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。

因此,在自动化机床的综合加工自动线上,目前几乎都没有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产。

综上所述,有效的应用机械手,是发展机械工业的必然趋势。

本机械手主要与多工位冲床组合最终形成生产线,实现加工过程(上料、加工、下料)的自动化、无人化。

目前,我国的制造业正在迅速发展,越来越多的资金流向制造业,越来越多的厂商加入到制造业。

本设计能够应用到加工工厂车间,从而减轻工人劳动强度,节约加工辅助时间,提高生产效率和生产力。

1.2机械手的组成和分类1.2.1机械手的组成机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。

各系统相互之间的关系如方框图2-1所示。

图2-1机械手组成方框图一执行机构包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。

1、手部即与物件接触的部件。

由于与物件接触的形式不同,可分为夹持式和吸附式手在本课题中我们采用夹持式手部结构。

夹持式手部由手指或手爪和传力机构所构成。

手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。

回转型手指结构简单,制造容易,故应用较广泛。

平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。

手指结构取决于被抓取物件的表面形状、被抓部位是外廓或是内孔和物件的重量及尺寸。

常用的指形有平面的、V形面的和曲面的手指有外夹式和内撑式;指数有双指式、多指式和双手双指式等。

而传力机构则通过手指产生夹紧力来完成夹放物件的任务。

传力机构型式较多时常用的有滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。

图1-1机械手手抓结构2、手腕是连接手部和手臂的部件,并可用来调整被抓取物件的方位即姿势3、手臂手臂是支承被抓物件、手部、手腕的重要部件。

手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置.工业机械手的手臂通常由驱动手臂运动的部件如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等与驱动源如液压、气压或电机等相配合,以实现手臂的各种运动。

4、立柱立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降或俯仰运动均与立柱有密切的联系。

机械手的立I因工作需要,有时也可作横向移动,即称为可移式立柱。

5、行走机构当工业机械手需要完成较远距离的操作,或扩大使用范围时,可在机座上安滚轮式行走机构可分装滚轮、轨道等行走机构,以实现工业机械手的整机运动。

滚轮式布为有轨的和无轨的两种。

驱动滚轮运动则应另外增设机械传动装置。

6、机座机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。

二驱动系统驱动系统是驱动工业机械手执行机构运动的动力装置调节装置和辅助装置组成。

常用的驱动系统有液压传动、气压传动、机械传动。

控制系统是支配着工业机械手按规定的要求运动的系统。

目前工业机械手的控制系统一般由程序控制系统和电气定位或机械挡块定位系统组成。

控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息如动作顺序、运动轨迹、运动速度及时间,同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。

二控制系统控制系统是支配着工业机械手按规定的要求运动的系统。

目前工业机械手的控制系统一般由程序控制系统和电气定位或机械挡块定位系统组成。

控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息如动作顺序、运动轨迹、运动速度及时间,同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。

四位置检测装置控制机械手执行机构的运动位置,并随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度达到设定位置。

1.2.2机械手的分类业机械手的种类很多,关于分类的问题,目前在国内尚无统一的分类标准,在此暂按使用范围、驱动方式和控制系统等进行分类。

一按用途分机械手可分为专用机械手和通用机械手两种1、专用机械手它是附属于主机的、具有固定程序而无独立控制系统的机械装置。

专用机械手具有动作少、工作对象单

一、结构简单、使用可靠和造价低等特点,适用于大批量的自动化生产的自动换刀机械手,如自动机床、自动线的上、下料机械手。

2、通用机械手它是一种具有独立控制系统的、程序可变的、动作灵活多样的机械手。

格性能范围内,其动作程序是可变的,通过调整可在不同场合使用,驱动系统和控制系统是独立的。

通用机械手的工作范围大、定位精度高、通用性强,适用于不断变换生产品种的中小批量自动化的生产。

通用机械手按其控制定位的方式不同可分为简易型和伺服型两种简易型以“开一关”式控制定位,只能是点位控制可以是点位的,也可以实现连续轨控制,伺服型具有伺服系统定位控制系统,一般的伺服型通用机械手属于数控类型。

二按驱动方式分1、液压传动机械手是以液压的压力来驱动执行机构运动的机械手。

其主要特点是抓重可达几百公斤以上、传动平稳、结构紧凑、动作灵敏。

但对密封装置要求严格,不然油的泄漏对机械手的工作性能有很大的影响,且不宜在高温、低温下工作。

若机械手采用电液伺服驱动系统,可实现连续轨迹控制,使机械手的通用性扩大,但是电液伺服阀的制造精度高,油液过滤要求严格,成本高。

2、气压传动机械手是以压缩空气的压力来驱动执行机构运动的机械手。

其主要特点是介质李源极为方便,输出力小,气动动作迅速,结构简单,成本低。

但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环境中进行工作。

3、机械传动机械手即由机械传动机构如凸轮、连杆、齿轮和齿条、间歇机构等驱动的机械手。

它是一种附属于工作主机的专用机械手,其动力是由工作机械传递的。

它的主要特点是运动准确可靠,用于工作主机的上、下料。

动作频率大,但结构较大,动作程序不可变。

4、电力传动机械手即有特殊结构的感应电动机、直线电机或功率步进电机直接驱动执行机构运动的械手,因为不需要中间的转换机构,故机械结构简单。

其中直线电机机械手的运动速度快和行程长,维护和使用方便。

此类机械手目前还不多,但有发展前途。

三按控制方式分1、点位控制它的运动为空间点到点之间的移动,只能控制运动过程中几个点的位置,不能控制其运动轨迹。

若欲控制的点数多,则必然增加电气控制系统的复杂性。

目前使用的专用和通用工业机械手均属于此类。

2、连续轨迹控制它的运动轨迹为空间的任意连续曲线,其特点是设定点为无限的,整个移动过程处于控制之下,可以实现平稳和准确的运动,并且使用范围广,但电气控制系统复杂。

这类工业机械手一般采用小型计算机进行控制。

1.3国内外发展状况国外机器人领域发展近几年有如下几个趋势1工业机器人性能不断提高高速度、高精度、高可靠性、便于操作和维修,而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的65万美元。

2机械结构向模块化、可重构化发展。

例如关节模块中的伺服电机、减速机、检测系统三位一体化由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。

3工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构大大提高了系统的可靠性、易操作性和可维修性。

4机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。

5虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。

6当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。

美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。

7机器人化机械开始兴起。

从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。

我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前己基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线站上获得规模应用,弧焊机器人己应用在汽车制造厂的焊装线上。

但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如可靠性低于国外产品机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国己安装的国产工业机器人约200台,约占全球已安装台数的万分之四。

以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。

因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程.我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。

其中最为突出的是水下机器人,6000m水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了不少工作,有了一定的发展基础。

但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中。

1.4课题的主要要求设计通用圆柱坐标系机械手及控制系统。

设计中的机械手各动作由液压缸驱动,并有电磁阀控制,技术指标如下(1、)原始数据a、抓重200Nb、自由度(四个自由度)c、动作符号行程范围速度伸缩X500mm小于300mm/s升降Z330mm小于70mm/s回转φ0180º小于90º/sd、手腕运动参数回转φ行程范围0180º速度小于90º/se、手指夹持范围棒料,直径6585mm,长度4501200mmf、定位方式电位器(或接近开关等)设定,点位控制g、驱动方式液压(中、低压系统)h、定位精度±3mm。

i、控制方式PLC1.5设计内容及安排a、熟悉任务,查阅资料b、画出机械手装配图c、画出液压控制原理图d、根据控制要求,选择PLC型号及输入输出元件e、画出PLC控制的输出输入接线图f、完成梯形图和语句表的程序设计g、整理设计说明书,答辩要求a、上述工作要求扎扎实实完成,绝不能打过场b、培养独立思考的,独立动手,独立查阅资料,严谨治学、一丝不苟的精神c、培养独立分析问题、解决问题的能力d、有关问题按照课程设计大纲要求进行第二章手部结构2.1手部结构设计2.1.1概述手部是机械手直接用于抓取和握紧工件或夹持专用工具进行操作的部件,它具有模仿人手的功能,并安装于机械手手臂的前端。

机械手结构型式不象人手,它的手指形状也不象人的手指、,它没有手掌,只有自身的运动将物体包住,因此,手部结构及型式根据它的使用场合和被夹持工件的形状,尺寸,重量,材质以及被抓取部位等的不同而设计各种类型的手部结构,它一般可分为钳爪式,气吸式,电磁式和其他型式。

钳爪式手部结构由手指和传力机构组成。

其传力机构形式比较多,如滑槽杠杆式、连杆杠杆式、斜楔杠杆式、齿轮齿条式、弹簧杠杆式等,这里采用连杆杠杆式。

2.1.2设计时应考虑的几个问题①应具有足够的握力(即夹紧力)在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯性力和振动,以保证工件不致产生松动或脱落。

②手指间应有一定的开闭角两个手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。

手指的开闭角保证工件能顺利进入或脱开。

若夹持不同直径的工件,应按最大直径的工件考虑。

③应保证工件的准确定位为使手指和被夹持工件保持准确的相对位置,必须根据被抓取工件的形状,选择相应的手指形状。

例如圆柱形工件采用带‘V’形面的手指,以便自动定心。

④应具有足够的强度和刚度手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力和振动的影响,要求具有足够的强度和刚度以防止折断或弯曲变形,但应尽量使结构简单紧凑,自重轻。

⑤应考虑被抓取对象的要求应根据抓取工件的形状、抓取部位和抓取数量的不同,来设计和确定手指的形状。

2.2手部计算2.2.1驱动力的计算1.手指2.连杆3.拉杆4.指座图1连杆杠杆式手部受力分析如图所示为连杆式手部结构。

作用在拉杆上的驱动力3为P,两连杆2对拉杆反作用力为P1、P2,其力的方向沿连杆两铰链中心的连线,指向O点并与水平方向成α角,由拉杆的力平衡条件可知,即∑Fx0,P1P2;∑Fy0P2P1cosαP1P/2cosα连杆对手指的作用力为p1′,因连杆2为2力杆。

手指握紧工件时所需的力称为握力(即夹紧力),假想握力作用在过手指与工件接触面的对称平面内,并设两力的大小相等,方向相反,以N表示。

由手指的力矩平衡条件,即∑m01F0得P1′hNb因hccosα所以P2btgαN/c式中b手指的回转支点到对称中心线的距离(毫米)。

c手指的回转支点到连杆铰链连接点的距离(毫米)α工件被夹紧时手指的滑槽方向与两回转支点连线间的夹角。

由上式可知,当驱动力P一定时,握力N与α角成正切反比。

α角小时可获得较大的握力,α0的时候使手指闭合到最小位置即为自锁位置,这时去掉驱动力,工件也不会自行脱落。

若拉杆再往下移动,则手指反而会松开,为避免这种情况的发生,需保持α大于零,一般取α30°40°。

这里取角α30度。

这种手部结构简单,具有动作灵活等特点。

查工业机械手设计基础中表2-1可知,V形手指夹紧圆棒料时,握力的计算公式N0.5G,综合前面驱动力的计算方法,可求出驱动力的大小。

为了考虑工件在传送过程中产生的惯性力、振动以及传力机构效率的影响,其实际的驱动力P实际应按以下公式计算,即P实际PK1K2/η式中η手部的机械效率,一般取0.850.95;K1安全系数,一般取1.22K2工作情况系数,主要考虑惯性力的影响,K2可近似按下式估计,K21a/g,其中a为被抓取工件运动时的最大加速度,g为重力加速度。

本机械手的工件只做水平和垂直平移,当它的移动速度为500毫米/秒,移动加速度为1000毫米/秒,工件重量G为300牛顿,V型钳口的夹角为120°,α30°时,拉紧油缸的驱动力P和P实际计

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2