通风安全课程设计.docx

上传人:b****1 文档编号:14439647 上传时间:2023-06-23 格式:DOCX 页数:26 大小:195.10KB
下载 相关 举报
通风安全课程设计.docx_第1页
第1页 / 共26页
通风安全课程设计.docx_第2页
第2页 / 共26页
通风安全课程设计.docx_第3页
第3页 / 共26页
通风安全课程设计.docx_第4页
第4页 / 共26页
通风安全课程设计.docx_第5页
第5页 / 共26页
通风安全课程设计.docx_第6页
第6页 / 共26页
通风安全课程设计.docx_第7页
第7页 / 共26页
通风安全课程设计.docx_第8页
第8页 / 共26页
通风安全课程设计.docx_第9页
第9页 / 共26页
通风安全课程设计.docx_第10页
第10页 / 共26页
通风安全课程设计.docx_第11页
第11页 / 共26页
通风安全课程设计.docx_第12页
第12页 / 共26页
通风安全课程设计.docx_第13页
第13页 / 共26页
通风安全课程设计.docx_第14页
第14页 / 共26页
通风安全课程设计.docx_第15页
第15页 / 共26页
通风安全课程设计.docx_第16页
第16页 / 共26页
通风安全课程设计.docx_第17页
第17页 / 共26页
通风安全课程设计.docx_第18页
第18页 / 共26页
通风安全课程设计.docx_第19页
第19页 / 共26页
通风安全课程设计.docx_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

通风安全课程设计.docx

《通风安全课程设计.docx》由会员分享,可在线阅读,更多相关《通风安全课程设计.docx(26页珍藏版)》请在冰点文库上搜索。

通风安全课程设计.docx

通风安全课程设计

第一章、局部通风设计4

一、设计原则及掘进通风方法的选择4

二、掘进工作面所需风量计算及设计5

第二章、风量计算及风量分配7

一、矿井需风量计算7

二、风量分配与风速验算12

第三章、矿井通风阻力计算16

一、计算原则17

二、计算方法17

第四章、主要通风机选型20

一、自然风压20

二、选择主要通风机22

五、概算矿井通风费用及评价25

1、吨煤的通风电费25

2、矿井等积孔、总风阻26

 

矿井通风课程设计

摘要

矿井局部通风设计是矿井总体设计中的一个重要组成部分,是保证矿井安全生产的重要组成部分。

其基本任务是根据开拓、开采巷道布置、掘进区域煤岩层的自然条件以及掘进工艺,建立一个安全可靠、技术先进、经济合理和便于管理的通风系统。

并在此基础上确定合理的局部通风方法及其布置方式,选择风筒类型和直径,计算风筒出入口风量,计算风筒通风阻力,选择好局部通风机。

因此,必须根据实际生产环境周密考虑,精心设计达到最佳效果。

题目3:

某煤矿井田范围走向长7.42km,倾斜宽0.66—1.47km,井田面积约8.53km2。

位于背斜南翼,为一般平缓的单斜构造,地层产状走向近东西向,倾向南,倾角10-25°,一般为16°左右。

矿井生产能力为90万t/a。

矿井采用中央竖井,煤层分组采区上山布置的开拓方式,单翼对角式通风。

矿井通风难易时期的系统示意图见后。

井田设三个井筒:

主井、副井、风井。

地面标高+200m。

全矿井划分为两个水平,第一水平标高-150m,第二水平标高-350m,回风水平标高+45~+50m。

第一水平东西运输大巷布置在煤层的底板岩石中,距煤层30m,通过水平大巷开拓煤层的全部上山采区。

矿井采用走向长壁开采方式。

该矿是高瓦斯矿井,瓦斯涌出量较大,为安全起见,用“品”字形布置三条上山。

采用综合机械化放顶煤采煤。

采煤工作面的平均断面积8.1m2,回采工作面温度一般在21°,回风巷风流中瓦斯(或二氧化碳)的平均绝对涌出量为6.45m3/min,三四班交接时人数最多70人;掘进工作面平均绝对瓦斯涌出量3.95m3/min,掘进工作面同时工作的最多人数15人,一次爆破炸药用量4.3kg。

第一章、局部通风设计

一、设计原则及掘进通风方法的选择

1、设计原则

根据开拓、开采巷道布置、掘进区域煤岩层的自然条件以及掘进工艺,确定合理的局部通风方法及其布置方式,选择风筒类型和直径,计算风筒出入口风量,计算风筒通风阻力,选择局部通风机。

局部通风是矿井通风系统的一个重要组成部分,其新风取自矿井主风流,其污风又排入矿井主风流。

其设计原则可归纳如下:

(1)矿井和采区通风系统设计应为局部通风创造条件;

(2)局部通风系统要安全可靠、经济合理和技术先进;

(3)尽量采用技术先进的低噪、高效型局部通风机;

(4)压人式通风宜用柔性风筒,抽出式通风宜用带刚性骨架的可伸缩风筒或完全刚性的风筒。

风筒材质应选择阻燃、抗静电型。

(5)当一台风机不能满足通风要求时可考虑选用两台或多台风机联合运行。

2、掘进通风方法的选择

掘进通风方法分为利用矿井内总风压通风和利用局部动力设备通风的方法,局部通风机通风是矿井广泛采用的掘进通风方法,它是由局部通风机和风筒(或风障)组成一体进行通风,按其工作方式可分为:

(1)压入式通风

(2)抽出式通风

(3)混合式通风

压入式通风新风经过风机,安全系数高,可用柔性风筒,柔性风筒重量轻,易于贮存和搬运,连接和悬吊也简单,胶布和人造革风筒防水性能好,是大多数矿井局部通风的选择,结合本设计故选择压入式通风。

二、掘进工作面所需风量计算及设计

根据《规程》规定:

矿井必须采用局部通风措施

1、掘进工作面所需风量

煤巷、半煤岩巷和岩巷掘进工作面的风量,应按下列因素分别计算,取其最大值。

1)按瓦斯(二氧化碳)涌出量计算

m3/s

式中:

Q掘——掘进工作面实际需风量,m3/s;

QCH4——掘进工作面平均绝对瓦斯涌出量,m3/min;

K掘——掘进工作面因瓦斯涌出量不均匀的备用风量系数。

即掘进工作面最大绝对瓦斯涌出量与平均绝对瓦斯涌出量之比。

通常,机掘工作面取1.5~2.0;炮掘工作面取1.8~2.0。

根据题目要求,此处取1.9。

=12.5m3/s

2)按炸药使用量计算

/60m3/s

式中:

25——使用1㎏炸药的供风量,m3/min;

A掘——掘进工作面一次炸破所用的最大炸药量,㎏。

/60=

m3/s

3)按工作人员数量计算

/60m3/s

式中:

N掘——掘进工作面同时工作的最多人数,人。

掘=4

15/60=1m3/s

所以Q掘取最大值即Q掘=12.5m3/s

4)按风速进行验算

煤巷、半煤岩巷掘进工作面的风量应满足:

式中:

——掘进工作面巷道过风断面积,m2。

=8.5m2,

则掘进工作面最小需风量:

0.25

8.5=2.125m3/s;

掘进工作面最大需风量:

4

8.5=34m3/s。

12.5m3/s介于2.125m3/s和34m3/s之间,符合要求。

2、掘进面的设计

1)巷道断面

取掘进断面为8.5m2。

2)支护形式

在上下顺槽内,巷道支护形式采用工字钢。

(三)掘进通风设备选择

1、风筒的选择

略。

2、局部通风机的选择

2)、局部通风机的工作风压hf

3)、局部通风机选型:

第二章、风量计算及风量分配

一、矿井需风量计算

对设计矿井的风量,可按两种情况分别计算:

一种是新矿区无邻近矿井通风资料可参考时,矿井需要风量应按设计中井下同时工作的最多人数和按吨煤瓦斯涌出量的不同的吨煤供风量计算,并取其中最大值。

在矿井设计中吨煤瓦斯涌出量的计算,根据在地质勘探时测定煤层瓦斯含量,结合矿井地质条件和开采条件计算出吨煤瓦斯涌出量,再计算矿井需风量。

另一种是依据邻近生产矿井的有关资料,按生产矿井的风量计算方法进行。

其原则是:

矿井的供风量应保证符合矿井安全生产的要求,使风流中瓦斯、二氧化碳、氢气和其它有害气体的浓度以及风速、气温等必须符合《规程》有关规定。

创造良好的劳动环境,以利于生产的发展。

课程设计是在收集实习矿井资料基础上进行的,故可按此种方法计算矿井风量。

即按生产矿井实际资料,分别计算设计矿井采煤工作面、掘进工作面、硐室等所需风量,得出全矿井需风量,即“由里往外”计算方法。

1、生产工作面、备用工作面

每个回采工作面实际需要风量,应按瓦斯、二氧化碳涌出量和爆破后的有害气体产生量以及工作面气温、风速和人数等规定分别进行计算,然后取其中最大值。

本设计矿井属高瓦斯矿井。

(1)、高瓦斯矿井按照瓦斯(或二氧化碳)涌出量计算。

根据《煤矿安全规程》规定,按回采工作面回风流中瓦斯(或二氧化碳)的浓度不超过1%的要求计算:

式中:

Qc——回采工作面实际需要风量,m3/s;

qc——回采工作面回风巷风流中瓦斯(或二氧化碳)的平均绝对涌出量,m3/s;

KCH4——采面瓦斯涌出不均衡通风系数。

(正常生产条件下,连续观测1个月,日最大绝对瓦斯涌出量与月平均日瓦斯绝对涌出量的比值)。

通常机采工作面取KCH4=1.2~1.6;炮采工作面取KCH4=1.4~2.0;水采工作面取KCH4=2.0~3.0。

本设计为机采综放采煤,取KCH4=1.4。

=100

6.45

1.4/60=15m3/s。

(2)、按工作面温度选择适宜的风速进行计算(见表5-3)

表5-3采煤工作面风速

回采工作面空气温度(℃)

采煤工作面风速(m/s)

配风调整系数K温

 

此处取采煤工作面风速1.3

<18

0.3~0.8

0.90

18~20

0.8~1.0

1.00

20~23

1.0~1.5

1.00~1.10

23~26

1.5~1.8

1.10~1.25

26~28

1.8~2.5

1.25~1.4

28~30

2.5~3.0

1.4~1.6

(m3/s)

式中:

Vc——采煤工作面风速,m/s;

Sc——采煤工作面的平均断面积,m2。

=1.3

8.1=10.53m3/s

(3)、按回采工作面同时作业人数

每人供风不小于4m3/min,则

(m3/s)

式中:

N——采煤工作面同时工作人数,本设计为90人。

m3/s

根据上述计算并取其中最大值即回采工作面实际需要风量为15(m3/s)

(4)、按风速进行验算:

(m3/s)

式中:

S——工作面平均断面积,m2。

此处为8.1m2。

所以,采煤工作面最小风量为0.25

8.1=2.025m3/s;

采煤工作面最大风量为4

8.1=32.4m3/s。

由于15m3/s介于2.025m3/s和32.4m3/s之间,故回采工作面实际需要风量为15m3/s。

(5)、备用工作面亦应满足按瓦斯、二氧化碳、气温等规定计算的风量,且最少不得低于采煤工作面实际需要风量的50%。

所以备用工作面风量取15×50%=7.5m3/s。

2、掘进工作面所需风量

掘进工作面的需风量可利用第一章计算结果,即为12.5m3/s。

3、硐室实际需要风量

硐室实际需要风量应按矿井各个独立通风硐室实际需要风量的总和计算,即

式中:

Q火——火药库实际需要风量,按每小时4次换气量计算,即Q火=4V/60=0.07V(m3/s);

V——井下爆炸材料库的体积,m3,包括联络巷道在内的火药库的空间总体积(m3),一般按经验值给定风量,大型火药库供风100~150m3/min;中小型火药库供风60~100m3/min;这里取80m3/min即1.333m3/s。

Q充——充电硐室实际需要风量,应按回风流中氢气浓度小于0.5%计算,但不得小于100m3/min,或按经验值给定100~200m3/min;这里取150m3/min即2.5m3/min。

机电硐室需要风量应根据不同硐室内设备的降温要求进行配风,选取硐室风量,须保证机电硐室温度不超过30℃,其它硐室温度不超过26℃。

Q机——大型机电硐室实际需要风量,应按机电设备运转的发热量计算,即

Wi——机电硐室中运转的机电总功率,kW;

(1-μi)——机电硐室的发热系数,应根据实际考查的结果确定,也可取下列数值,空气压缩机房取0.20~0.23;水泵房取0.02~0.04;

860——1kW/h的热当量数,千卡;

μi——机电设备效率;

Δt——机电硐室进回风流的气温差,℃;

Q采硐——采区绞车房或变电硐室实际需要风量,按经验供给风量60~80m3/min;这里都取80m3/min即1.333m3/s。

Q其它硐——其它硐室所需风量,根据具体情况供风。

所以

=1.333+2.5+1.333+1.333

=6.499m3/s。

4、矿井总风量

矿井总风量按下式计算

式中:

Qkj——矿井总进风量,m3/s;

∑Qcj——采煤工作面实际需要风量总和,m3/s;

∑Qjj——掘进工作面实际需要风量总和,m3/s;

∑Qdj——独立通风的硐室实际需要风量总和,m3/s;

∑Qgj——矿井中除采煤、掘进和硐室以外其它井巷需要通风量总和,m3/s;

Kkj——矿井通风系数(包括矿井内部漏风和配风不均匀等因素)宜取1.15~1.25,这里取1.2。

所以

=(15+12.5×2+6.499+7.5)×1.2

=64.8m3/s

矿井总漏风量为54×0.2=10.8m3/s;平均每处漏风量为10.8/6=1.8m3/s。

二、风量分配与风速验算

当风量分配到各用风地点后,必须结合巷道断面情况进行风速验证,保证各条巷道的风速均在合理范围内。

各条井巷的供风量确定后,要按《规程》第101条规定的风速进行验算。

需绘制出矿井通风系统图与网络图,计算出每条巷道的通过风量,计算出每条巷道的风速,进行验算,验算结果可填入表6中。

如果某条井巷的风速不符合《规程》规定,则必须进行调整,然后将各地点、各巷道的风量、断面、风速列成一览表。

矿井下各类巷道的适宜风速一般为:

阶段运输大巷:

4.5~5.0m/s;轨道上(下)山、运输上(下)山:

3.5~4.5m/s;回风上(下)山:

4.5~5.5m/s;区段运输平巷(顺槽):

3.0~3.5m/s;区段回风平巷(回风顺槽):

4.5~5.5m/s;阶段回风大巷、总回风巷:

5.5~6.5m/s。

表6巷道风速校验表

(1)容易时期

巷道名称编号

断面m2

容易时期

适宜风速m/s

允许风速m/s

备注

风量m3/s

风速m/s

最小

最大

1~2

28.26

64.8

2.293

8

2~3

11.1

64.8

5.838

3~4

11.1

64.8

5.838

4.5~5.0

0.25

6

4~5

10.2

51.1

5.010

3.5~4.5

0.25

6

5~6

10.2

26.1

2.559

3.5~4.5

0.25

6

6~7

8.5

22.5

2.647

3.5~4.5

0.25

6

7~8

8.1

22.5

2.778

3.0~3.5

8~9

8.5

22.5

2.647

0.25

4

9~10

10.2

64.8

6.353

4.5~5.5

|—

8

10~11

19.6

64.8

3.306

8

 

(2)困难时期

巷道名称编号

断面m2

困难时期

适宜风速m/s

允许风速m/s

备注

风量m3/s

风速m/s

最小

最大

1~2

28.26

64.8

2.293

8

2~3

11.1

64.8

5.838

3~4

11.1

64.8

5.838

4.5~5.0

0.25

6

4~5

10.2

51.1

5.010

3.5~4.5

0.25

6

5~6

10.2

26.1

2.559

3.5~4.5

0.25

6

6~7

10.2

15

1.471

3.5~4.5

0.25

6

7~8

8.5

15

1.765

3.0~3.5

0.25

4

8~9

8.1

15

1.852

|—

8

9~10

8.5

15

1.765

4.5~5.5

8

10~11

10.2

64.8

6.353

5.5~6.5

0.25

8

11~12

10.2

64.8

6.353

0.25

6

12~13

10.2

64.8

3.306

0.25

6

《规程》规定的风速限定值见表7所示。

表7风速限定值

井巷名称

最低允许风速(m/s)

最高允许风速(m/s)

无提升设备的风井和风硐

15

专为升降物料的井筒

12

风桥

10

升降人员和物料的井筒

8

主要进、回风巷道

8

架线电机车巷道

1.0

8

运输机巷道、采区进、回风巷道

0.25

6

采煤工作面,掘进中的煤巷和半煤岩巷

0.25

4

掘进中的岩巷

0.15

4

其它通风行人巷道

0.15

注1:

设有梯子间的井筒或修理中的井筒,风速不得超过8m/s,梯子间四周经封闭后,井筒中的最高允许风速可按表中有关规定执行。

注2:

无瓦斯涌出量的架线电机车巷道中的最低风速可低于1.0m/s,但不得低于0.5m/s。

注3:

综合机械化采煤工作面,在采取煤层注水和采煤机喷雾降尘等措施后,其最大风速可高于4m/s的规定值,但不得超过5m/s。

注4:

专用排瓦斯巷道的风速不得低于0.5m/s,抽放瓦斯巷道的风速不应低于0.5m/s。

容易时期通风网络图困难时期通风网络图

风量分配

容易时期

1~2副井:

64.8

2~3主石门:

64.8

3~4大巷:

64.8

4~5南五运输上山:

64.8-6.499-1.8×4=51.1

5~6南五运输上山:

51.1-25=26.1

6~721051运输巷:

26.1-2×1.8=22.5

7~8采煤面:

22.5

8~921051运输巷:

22.5

9~10回风石门64.8

10~11回风井64.8

困难时期

1~2副井:

64.8

2~3主石门:

64.8

3~4大巷:

64.8

4~5南一运输上山:

64.8-6.499-1.8×4=51.1

5~6南一运输上山:

51.1-25=26.1

6~7南一运输上山:

26.1-1.8×2-7.5=15

7~821011运输平巷:

15

8~9采煤面:

15

9~1021011运输平巷:

15

10~11总回风巷:

64.8

11~12回风石门:

64.8

12~13回风井:

64.8

第三章、矿井通风阻力计算

在主要通风机整个服务期限内,矿井通风总阻力随着开采深度的增加和走向范围的扩大以及产量提高而增加。

为了主要通风机于整个服务期限内均能在合理的效率范围内运转,在选择主要通风机时必须考虑到最大可能的总阻力和最小可能的总阻力,前者对应于主要通风机服务期限内通风最困难时期矿井总阻力,后者对应于通风最容易时期的矿井总阻力,同时还考虑到自然风压的作用。

一、计算原则

1、在进行矿井通风总阻力计算时,不要计算每一条巷道的通风阻力,只选择其中一条阻力最大的风路进行计算。

但必须是选择矿井达到设计产量以后,通风容易时期和通风困难时期的阻力最大风路。

一般,可在两个时期的通风系统图上根据采掘作业布置情况分别找出风流线路最长、风量较大的一条线路作为阻力最大的风路。

在选定的线路上(分最容易和最困难时期),从进风井口到回风井口逐段编号,对各段井巷进行阻力计算,然后累加起来得出这两个时期的各自井巷通风总阻力(h阻易、h阻难)。

如果通风系统复杂,直观上难以判断哪条风路阻力最大时,则需选择几条风路,通过计算比较选出其中最大值。

如果矿井服务年限较长,则只计算头15~25a的通风容易和困难两个时期的井巷通风总阻力。

2、为了经济、合理、安全地使用主要通风机,应控制h阻难不太大,对大型矿井不超过4400Pa,有自燃倾向的矿井不超过3400Pa。

二、计算方法

沿着上述两个时期通风阻力最大的风路,分别用下式算出各区段井巷的摩擦阻力:

h摩=a·L·U·Q2/S3(Pa)

式中:

L、U、S——分别为各井巷的长度、周长、净断面积(m,m,m2);

a——摩擦阻力系数,可查阅《煤矿通风与安全》一书的附录;

Q——各井巷和硐室所通过的风量分配值,系根据前面所计算的各井巷硐室所需要的实际风量值再乘以K矿(即考虑井巷的内部漏风和配风不均匀等因素)后所求得风量值,m3/s。

将以上计算结果填入表7中。

其总和为总摩擦阻力∑h摩,即是:

∑h摩=h1-2+h2-3+……+h-n-(n+1)(Pa)

式中:

h1-2、h2-3、……为各段井巷之摩擦阻力,Pa。

因此,全矿总阻力为:

(1)通风容易时期的总阻力h阻易为:

h阻易=1.2∑h摩易

(2)通风困难时期的总阻力h阻难为:

h阻难=1.15∑h摩难

式中:

1.2、1.15——考虑到风路上有局部阻力的系数。

 

井巷通风总阻力计算表

巷道

各段

序号

支护

NS2/m4

巷道参数

R

(NS2/m8)

风量Q

(m3/s)

h摩

(pa)

V

(m/s)

L

(m)

U

(m)

S

(m2)

S3

(m6)

1~2

副井

350

18.84

28.26

2~3

主石门

砌碹

270

12.79

11.1

3~4

大巷

锚喷

2600

12.79

11.1

4~5

南五运输上山

梯形工钢

141

12.26

10.2

5~6

南五运输上山

梯形工钢

170

12.6

10.2

6~7

21051运输巷

工字钢

1150

11.20

8.5

7~8

采煤面

液压支架

160

10.93

8.1

8~9

21051回风巷

工字钢

1150

11.20

8.5

9~10

回风石门

砌碹

30

12.26

10.2

10~11

回风井

245

15.70

19.6

局部阻力

合计

巷道

各段

序号

支护

NS2/m4

巷道参数

R

(NS2/m8)

风量Q

(m3/s)

h摩

(pa)

V

(m/s)

L

(m)

U

(m)

S

(m2)

S3

(m6)

1~2

副井

350

18.84

28.26

2~3

主石门

砌碹

270

12.79

11.1

3~4

大巷

锚喷

650

12.79

11.1

4~5

南一运输上山

梯形工钢

125

12.26

10.2

5~6

南一运输上山

梯形工钢

160

12.6

10.2

6~7

南一运输上山

梯形工钢

170

12.6

10.2

7~8

21011运输平巷

工字钢

1320

11.20

8.5

8~9

采煤面

液压支架

160

10.93

8.1

9~10

21011回风平巷

工字钢

1320

11.20

8.5

10~11

总回风巷

锚喷

2400

12.26

10.2

11~12

回风石门

砌碹

30

12.26

10.2

12~13

回风井

245

15.70

19.6

局部阻力

合计

第四章、主要通风机选型

一、自然风压

矿井冬、夏季气温差别较大,使得空气密度也有所差别,致使矿井自然风压也气温变化而变化,因此需计算矿井自然风压。

规定矿井冬、夏季空气密度如表6-2所示。

表6-2矿井冬、夏季空气密度

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2