ansysworkbench流固耦合计算实例.docx

上传人:b****1 文档编号:14498441 上传时间:2023-06-24 格式:DOCX 页数:20 大小:169.09KB
下载 相关 举报
ansysworkbench流固耦合计算实例.docx_第1页
第1页 / 共20页
ansysworkbench流固耦合计算实例.docx_第2页
第2页 / 共20页
ansysworkbench流固耦合计算实例.docx_第3页
第3页 / 共20页
ansysworkbench流固耦合计算实例.docx_第4页
第4页 / 共20页
ansysworkbench流固耦合计算实例.docx_第5页
第5页 / 共20页
ansysworkbench流固耦合计算实例.docx_第6页
第6页 / 共20页
ansysworkbench流固耦合计算实例.docx_第7页
第7页 / 共20页
ansysworkbench流固耦合计算实例.docx_第8页
第8页 / 共20页
ansysworkbench流固耦合计算实例.docx_第9页
第9页 / 共20页
ansysworkbench流固耦合计算实例.docx_第10页
第10页 / 共20页
ansysworkbench流固耦合计算实例.docx_第11页
第11页 / 共20页
ansysworkbench流固耦合计算实例.docx_第12页
第12页 / 共20页
ansysworkbench流固耦合计算实例.docx_第13页
第13页 / 共20页
ansysworkbench流固耦合计算实例.docx_第14页
第14页 / 共20页
ansysworkbench流固耦合计算实例.docx_第15页
第15页 / 共20页
ansysworkbench流固耦合计算实例.docx_第16页
第16页 / 共20页
ansysworkbench流固耦合计算实例.docx_第17页
第17页 / 共20页
ansysworkbench流固耦合计算实例.docx_第18页
第18页 / 共20页
ansysworkbench流固耦合计算实例.docx_第19页
第19页 / 共20页
ansysworkbench流固耦合计算实例.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

ansysworkbench流固耦合计算实例.docx

《ansysworkbench流固耦合计算实例.docx》由会员分享,可在线阅读,更多相关《ansysworkbench流固耦合计算实例.docx(20页珍藏版)》请在冰点文库上搜索。

ansysworkbench流固耦合计算实例.docx

ansysworkbench流固耦合计算实例

OscillatingPlatewithTwo-WayFluid-StructureInteraction

Introduction

Thistutorialincludes:

∙Features

∙OverviewoftheProblemtoSolve

∙SettinguptheSolidPhysicsinSimulation(ANSYSWorkbench)

∙SettinguptheFluidPhysicsandANSYSMulti-fieldSettingsinANSYSCFX-Pre

∙ObtainingaSolutionusingANSYSCFX-SolverManager

∙ViewingResultsinANSYSCFX-Post

Ifthisisthefirsttutorialyouareworkingwith,itisimportanttoreviewthefollowingtopicsbeforebeginning:

∙SettingtheWorkingDirectory

∙ChangingtheDisplayColors

Unlessyouplanonrunningasessionfile,youshouldcopythesamplefilesusedinthistutorialfromtheinstallationfolderforyoursoftware(/examples/)toyourworkingdirectory.Thispreventsyoufromoverwritingsourcefilesprovidedwithyourinstallation.Ifyouplantouseasessionfile,pleaserefertoPlayingaSessionFile.

Samplefilesreferencedbythistutorialinclude:

1.Features

ThistutorialaddressesthefollowingfeaturesofANSYSCFX.

Component

Feature

Details

ANSYSCFX-Pre

UserMode

GeneralMode

SimulationType

Transient

ANSYSMulti-field

FluidType

GeneralFluid

DomainType

SingleDomain

TurbulenceModel

Laminar

HeatTransfer

None

OutputControl

MonitorPoints

TransientResultsFile

BoundaryDetails

Wall:

MeshMotion=ANSYSMultiField

Wall:

NoSlip

Wall:

Adiabatic

Timestep

Transient

ANSYSCFX-Post

Plots

Animation

Contour

Vector

Inthistutorialyouwilllearnabout:

∙Movingmesh

∙Fluid-solidinteraction(includingmodelingsoliddeformationusingANSYS)

∙RunninganANSYSMulti-field(MFX)simulation

∙Post-processingtworesultsfilessimultaneously.

2.OverviewoftheProblemtoSolve

Thistutorialusesasimpleoscillatingplateexampletodemonstratehowtosetupandrunasimulationinvolvingtwo-wayFluid-StructureInteraction,wherethefluidphysicsissolvedinANSYSCFXandthesolidphysicsissolvedintheFEApackageANSYS.Couplingbetweenthetwosolversisrequiredthroughoutthesolutiontomodeltheinteractionbetweenfluidandsolidastimeprogresses,andtheframeworkforthecouplingisprovidedbytheANSYSMulti-fieldsolver,usingtheMFXsetup.

Thegeometryconsistsofa2Dclosedcavity.Athinplateisanchoredtothebottomofthecavityasshownbelow:

Aninitialpressureof100Paisappliedtoonesideofthethinplateforsecondsinordertodistortit.Oncethispressureisreleased,theplateoscillatesbackwardsandforwardsasitattemptstoregainitsequilibrium(vertical)position.Thesurroundingfluiddampstheoscillations,whichthereforehaveanamplitudethatdecreasesintime.TheCFXSolvercalculateshowthefluidrespondstothemotionoftheplate,andtheANSYSSolvercalculateshowtheplatedeformsasaresultofboththeinitialappliedpressureandthepressureresultingfromthepresenceofthefluid.Couplingbetweenthetwosolversisrequiredsincethesoliddeformationaffectsthefluidsolution,andthefluidsolutionaffectsthesoliddeformation.

ThetutorialdescribesthesetupandexecutionofthecalculationincludingthesetupofthesolidphysicsinSimulation(withinANSYSWorkbench)andthesetupofthefluidphysicsandANSYSMulti-fieldsettingsinANSYSCFX-Pre.IfyoudonothaveANSYSWorkbench,thenyoucanusetheprovidedANSYSinputfiletoavoidtheneedforSimulation.

3.SettinguptheSolidPhysicsinSimulation(ANSYSWorkbench)

Thissectiondescribesthestep-by-stepdefinitionofthesolidphysicsinSimulationwithinANSYSWorkbenchthatwillresultinthecreationofanANSYSinputfile.Ifyouprefer,youcaninsteadusetheprovidedfileandcontinuefromSettinguptheFluidPhysicsandANSYSMulti-fieldSettingsinANSYSCFX-Pre.

CreatingaNewSimulation

1.Ifrequired,launchANSYSWorkbench.

2.ClickEmptyProject.TheProjectpageappearsdisplayinganunsavedproject.

3.SelectFile>SaveorclickSavebutton.

4.Ifrequired,setthepathlocationtoadifferentfolder.Thedefaultlocationisyourworkingdirectory.However,ifyouhaveaspecificfolderthatyouwanttousetostorefilescreatedduringthistutorial,changethepath.

5.UnderFilename,typeOscillatingPlate.

6.ClickSave.

7.UnderLinktoGeometryFileonthelefthandtaskbarclickBrowse.SelecttheprovidedfileandclickOpen.

8.MakesurethatishighlightedandclickNewsimulationfromtheleft-handtaskbar.

CreatingtheSolidMaterial

1.WhenSimulationopens,expandGeometryintheprojecttreeatthelefthandsideoftheSimulationwindow.

2.SelectSolid,andintheDetailsviewbelow,selectMaterial.

3.UsethearrowthatappearsnexttothematerialnameStructuralSteeltoselectNewMaterial.

4.WhentheEngineeringDatawindowopens,right-clickNewMaterialfromthetreeviewandrenameittoPlate.

5.EnterforYoung'sModulus,forPoisson'sRatioand2550forDensity.

Notethattheotherpropertiesarenotusedforthissimulation,andthattheunitsforthesevaluesareimpliedbytheglobalunitsinSimulation.

6.ClicktheSimulationtabnearthetopoftheWorkbenchwindowtoreturntothesimulation.

BasicAnalysisSettings

TheANSYSMulti-fieldsimulationisatransientmechanicalanalysis,withatimestepofsandatimedurationof5s.

1.SelectNewAnalysis>FlexibleDynamicfromthetoolbar.

2.SelectAnalysisSettingsfromthetreeviewandintheDetailsviewbelow,setAutoTimeSteppingtoOff.

3.SetTimeStepto.

4.UnderTabularDataatthebottomrightofthewindow,setEndTimetofortheSteps=1setting.

InsertingLoads

LoadsareappliedtoanFEAanalysisastheequivalentofboundaryconditionsinANSYSCFX.Inthissection,youwillsetafixedsupport,afluid-solidinterface,andapressureload.

FixedSupport

Thefixedsupportisrequiredtoholdthebottomofthethinplateinplace.

1.Right-clickFlexibleDynamicinthetreeandselectInsert>FixedSupportfromtheshortcutmenu.

2.RotatethegeometryusingtheRotate

buttonsothatthebottom(low-y)faceofthesolidisvisible,thenselectFace

andclickthelow-yface.

Thatfaceshouldbehighlightedtoindicateselection.

3.EnsureFixedSupportisselectedintheOutlineview,then,intheDetailsview,selectGeometryandclick1FacetomaketheApplybuttonappear(ifnecessary).ClickApplytosetthefixedsupport.

Fluid-SolidInterface

ItisnecessarytodefinetheregioninthesolidthatdefinestheinterfacebetweenthefluidinCFXandthesolidinANSYS.Dataisexchangedacrossthisinterfaceduringtheexecutionofthesimulation.

1.Right-clickFlexibleDynamicinthetreeandselectInsert>FluidSolidInterfacefromtheshortcutmenu.

2.Usingthesameface-selectionproceduredescribedearlier,selectthethreefacesofthegeometrythatformtheinterfacebetweenthesolidandthefluid(low-x,high-yandhigh-xfaces)byholdingdowntoselectmultiplefaces.Notethatthisloadisautomaticallygivenaninterfacenumberof1.

PressureLoad

Thepressureloadprovidestheinitialadditionalpressureof100[Pa]forthefirstsecondsofthesimulation.Itisdefinedusingastepfunction.

1.Right-clickFlexibleDynamicinthetreeandselectInsert>Pressurefromtheshortcutmenu.

2.Selectthelow-xfaceforGeometry.

3.IntheDetailsview,selectMagnitude,andusingthearrowthatappears,selectTabular(Time).

4.UnderTabularData,setapressureof100inthetablerowcorrespondingtoatimeof0.

Note:

Theunitsfortimeandpressureinthistablearetheglobalunitsof[s]and[Pa],respectively.

5.Younowneedtoaddtwonewrowstothetable.Thiscanbedonebytypingthenewtimeandpressuredataintotheemptyrowatthebottomofthetable,andSimulationwillautomaticallyre-orderthetableinorderoftimevalue.Enterapressureof100foratimevalueof,andapressureof0foratimevalueof.

Thisgivesastepfunctionforpressurethatcanbeseeninthecharttotheleftofthetable.

WritingtheANSYSInputFile

TheSimulationsettingsarenowcomplete.AnANSYSMulti-fieldruncannotbelaunchedfromwithinSimulation,sotheSolvebuttonscannotbeusedtoobtainasolution.

1.Instead,highlightSolutioninthetree,selectTools>WriteANSYSInputFileandchoosetowritethesolutionsetuptothefile.

2.Themeshisautomaticallygeneratedaspartofthisprocess.Ifyouwanttoexamineit,selectMeshfromthetree.

3.SavetheSimulationdatabase,usethetabnearthetopoftheWorkbenchwindowtoreturntotheOscillatingPlate[Project]tab,andsavetheprojectitself.

4.SettinguptheFluidPhysicsandANSYSMulti-fieldSettingsinANSYSCFX-Pre

Thissectiondescribesthestep-by-stepdefinitionoftheflowphysicsandANSYSMulti-fieldsettingsinANSYSCFX-Pre.

PlayingaSessionFile

IfyouwanttoskippasttheseinstructionsandtohaveANSYSCFX-Presetupthesimulationautomatically,youcanselectSession>PlayTutorialfromthemenuinANSYSCFX-Pre,thenrunthesessionfile:

.AfteryouhaveplayedthesessionfileasdescribedinearliertutorialsunderPlayingtheSessionFileandStartingANSYSCFX-SolverManager,proceedtoObtainingaSolutionusingANSYSCFX-SolverManager.

CreatingaNewSimulation

1.StartANSYSCFX-Pre.

2.SelectFile>NewSimulation.

3.SelectGeneralandclickOK.

4.SelectFile>SaveSimulationAs.

5.UnderFilename,typeOscillatingPlate.

6.ClickSave.

ImportingtheMesh

1.Right-clickMeshandselectImportMesh.

2.Selecttheprovidedmeshfile,andclickOpen.

Note:

ThefilethatwasjustcreatedinSimulation,,willbeusedasaninputfilefortheANSYSSolver.

Settingthe

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2