《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx

上传人:b****1 文档编号:14553630 上传时间:2023-06-24 格式:DOCX 页数:22 大小:298.96KB
下载 相关 举报
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第1页
第1页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第2页
第2页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第3页
第3页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第4页
第4页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第5页
第5页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第6页
第6页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第7页
第7页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第8页
第8页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第9页
第9页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第10页
第10页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第11页
第11页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第12页
第12页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第13页
第13页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第14页
第14页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第15页
第15页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第16页
第16页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第17页
第17页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第18页
第18页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第19页
第19页 / 共22页
《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx_第20页
第20页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx

《《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx》由会员分享,可在线阅读,更多相关《《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx(22页珍藏版)》请在冰点文库上搜索。

《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书.docx

《工程测试技术》课程设计基于单片机的LVDT位移测量传感器设计说明书

第一章总体方案设计………………………………………………3

设计目的…………………………………………………………………4

总体方案设计……………………………………………………………4

第二章硬件电路设计………………………………………………5

传感器的选择……………………………………………………………5

差动变压器传感器安装…………………………………………………6

2.3放大电路的设计…………………………………………………………7

2.4采集电路的设计…………………………………………………………7

2.5输入通道设计……………………………………………………………8

2.6显示电路的设计…………………………………………………………9

第三章软件的设计…………………………………………………10

3.1数据处理子程序的设计………………………………………………10

3.2数据采集子程序的设计…………………………………………………10

3.3数据显示子程序的设计…………………………………………………11

3.4地址空间的分配的设计…………………………………………………11

第四章设计总结……………………………………………………12

参考文献……………………………………………………………13

附总电路图…………………………………………………………13

附总程序……………………………………………………………13

 

随着时代科技的迅猛发展,微电子学和计算机等现代电子技术的成就给传统的电子测量与仪器带来了巨大的冲击和革命性的影响。

常规的测试仪器仪表和控制装置被更先进的智能仪器所取代,使得传统的电子测量仪器在远离、功能、精度及自动化水平定方面发生了巨大变化,并相应的出现了各种各样的智能仪器控制系统,使得科学实验和应用工程的自动化程度得以显著提高。

本文设计的电子秤以单片机为主要部件,用汇编语言进行软件设计,硬件则以差动变压器式(LVDT)位移传感器为主,测量0~10mm。

传感器输出的电量是模拟量,数值比较小达不到A/D转换接收的电压范围。

所以送A/D转换之前要对其进行前端放大、整形滤波等处理。

然后,A/D转换的结果才能送单片机进行数据处理并显示。

第一章总体方案设计

设计目的

差动变压器式(LVDT)位移传感器广泛应用于工业现场和测试领域,如过程检测和自动控制、形变测量等,适用于油污、光照等恶劣环境。

这种传感器可靠而耐用,但选用它监控机械位移量,还需设计与传感器配套的测量装置

研制开发的位移测量装置适用于工业现场和多种测试领域。

按照使用的要求,系统可实现:

有效量程10mm,精度0.0lmm;LED同时显示1-4路测量值;零点值重置等功能。

通过本次课程设计,达到以下三点:

(1).通过本次课程设计加深对差动变压器电感传感器在工程实践中的应用的了解;

(2).掌握用这种传感器组成位移测量系统的原理和方法;

(3).进一步掌握这种传感器的性能特点和工程应用。

总体方案设计

本系统采用内含4KB程序存储器的8位单片微型计算机89C51,其内部4KB程序存贮器可以满足本系统的需求,同时可以图主程序流程图

较大限度地减少外围器件;按照有效量程和精度,本系统选用国内厂家的配套产品AC-LVDT传感器;使用四组(每组5个)LED七段数码管同时显示四路测量值;用于过程控制的信号采样应较快,应采用较高速的A/D转换器。

主程序流程图、系统原理图分别如图、图.2所示。

图1.2.2系统原理

第二章硬件电路设计

传感器的工作原理

差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。

当差动变压器随着被测体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动电势输出。

利用两个线圈之间互感的变化引起感应电势的变化,来获得与被测量成一定函数关系的输出电压,实现非电量的测量。

应用最多的是螺线管式差动变压器,它可以测量1~100(mm)范围内的机械位移、150HZ以下的低频振动、加速度、应变、比重、张力、厚度、称重等一、切能引起机械位移变化的非电物理量。

本次差动变压器的原理是建立在CSY2000型传感器实训台的基础上的。

差动变压器电感传感器具有结构简单、性能优越、测量精度高、灵敏度高和价格合理等优点。

2.2、差动变压器传感器安装

1.将差动变压器和测微头(参照附:

测微头使用)安装在实验模板的支架座上,如下图2.2.1。

图2.2.1差动变压器传感器安装示意图

2、差动变压器的原理图已印刷在实验模板上,L1为初级线圈;L2、L3为次级线圈;*号为同名端。

按图2-3接线,差动变压器的原边L1的激励电压必须从主机箱中音频振荡器的Lv端子引入,检查接线无误后合上总电源开关,调节音频振荡器的频率为4-5KHz(可用主机箱的频率表输入Fin来监测);调节输出幅度峰峰值为Vp-p=2V(可用示波器监测:

X轴为0.2ms/div)。

图2差动变压器性能实验安装、接线图

2.3放大电路的设计

传感器输出电压为0~50mV,而A/D转换器所能处理的电压是0~5V,所以必须在A/D转换器前加入一个前置差动放大电路以实现电压的放大,放大倍数为100倍,使输出电压为0~5V。

由于单运放在应用中要求外围电路匹配精度高、增益调整不便、差动输入阻抗低,故采用三运放结构。

三运放结构具有差动输入阻抗高、共膜抑制比高、偏置电流低等优点,且有良好的温度稳定性,低噪单端输出和和增益调整方便,适于在传感器电路中应用。

如图2-2所示,图中RG为增益调节电阻,整个芯片仅R5为外接电阻,而运放A1为增益为100的差动输入放大器。

电压的放大倍数:

可由公式

得出

倍数。

因此我们可以改变R2和R1的比值来改变放大倍数。

量程的确定:

转动20圈进给10mm电压变化0.52V

灵敏度S=

=

…………………………(8)

根据电压得量程是+1.7V~

可以由公式8得出距离d得量程是+~-.

 

图2.放大电路硬件原理图

2.4采集电路的设计

2.4.1数据采集系统的组成

数据采集系统的核心是计算机,他对整个系统进行控制和数据处理,他由采样/保持器,放大器,A/D转换器,计算机组成。

2.4.1数据采样系统框图

2.4.2数据采样保持器

进行模数变换时,从启动变换到变换结束的数字量输出,需要一定的时间,即A/D转换的孔径时间。

当输入信号频率较高,由于孔径时间的存在,会造成较大的转换误差;为了防止误差需在中间加一个功能器件采样/保持器,进行有效、正确的数据采集。

采样/保持器通常由保持电容器、模拟开关和运算放大器组成。

采样保持器的原理:

如图2.4.2,当开关闭合时,V1通过限电流电阻向电容C充电,在电容值合理的情况下,V0随Vi的变化而变化;当K断开时,由于电容C有一定的容量,此时输出V0保持输入信号再开断开瞬间的电平值。

 

3

2

6

4

7

8

5

1

U2

AD620

3

2

6

4

7

8

5

1

U3

AD620

输入

高阻输入

模拟开关

输出

C4

1u

图2.4.2采样保持原理图

2.4.3AD0809的工作原理与连接

AD转换器与8031单片机相连接,将IN0的输入模拟信号转换成数字信号。

从而可以输入8031进行下一步处理。

采用逐位逼近式的AD转换器。

其原理如下图:

图2AD0809的原理图

当启动信号作用后,时钟信号在控制逻辑作用下。

首先是寄存器的最高位D3=1,其余为0,此数字量1000经D/A转换器换成模拟量8,送到比较器输入端与被转换地模拟量进行比较控制逻辑根据比较器输出进行判断,当Vin

Vo,则保留D3=1,再对下一位D2进行比较,同样先使D2=1,与D3一起即1100进入D/A转换器,进行比较,以此进行比较,到最后一位D0。

ADC0809转换器

8031单片机

输入通道设计

2.6显示电路的设计

显示部分可以将处理得出的信号在显示器上显示,让人们直观的看到被测体的质量,也可以进行报警提示。

本设计采用的显示模块是128×64点阵的汉字图形型液晶显示模块,可显示汉字及图形,内置8192个中文汉字(16X16点阵)、128个字符(8X16点阵)及64X256点阵显示RAM(GDRAM)。

可与CPU直接接口,提供两种界面来连接微处理机:

8-位并行及串行两种连接方式。

图2.6.1显示电路图

第三章软件的设计

3.1数据处理子程序的设计

数据处理子程序是整个程序的核心。

主要用来调整输入值系数,使输出满足量程要求。

另外完成A/D的采样结果从十六进制数向十进制数形式转化。

3.1.1系数调整

在IN0输入的数最大为10mm,要求的位移10mm对应的是5.0V,为十六进制向十进制转换方便,将系数放大100倍。

并用小数点位置的变化体现这一过程。

3.1.2数制转换

数制之间的转换:

在二进制数制中,每向左移图数据处理原理框图

一位表示数乘二倍。

以每四位作为一组对数分组,当第四位向第五位进位时,数由8变到16,若按十进制数制规则读数,则丢失6,所以应进行加六调整。

DA指令可完成这一调整。

可见数制之间的转换可以通过

移位的方法实现。

其中,移出数据的保存可以通过自乘再加进

的方法实现,因为乘二表示左移一位,左移后,低位进一,则需加一。

否则,加零。

而通过移位已将要移入的尾数保存在了进位位中,所以能实现。

3.2数据采集子程序的设计

数据采集用A/D0809芯片来完成,主要分为启动、读取数据、延时等待转换结束、读出转换结果、存入指定内存单元、继续转换(退出)几个步骤。

ADC0809初始化后,就具有了将某一通道输入的0~5模拟信号转换成对应的数字量00H—FFH,然后再存入8031内部RAM的指定单元中。

在控制方面有所区别。

可以采用程序查询方式,延时等待方式和中断方式。

图数据采样原理框图

3.3数据显示子程序的设计

显示子程序是字符显示,首先调用事先编好的8279的键盘显示子程序。

调用8279初始化命令,然后输出写显示命令。

在显示过程中一定要调用延时子程序。

当输入通道采集了一个新的过程参数,或仪表操作人员键入一个参数,或仪表与系统出现异常情况时显示管理软件应及时调用显示驱动程序模块,以更新当前的显示数据显示符号。

DIRMOVR0,#79H;置显示缓冲区首地址

MOVR3,#01H;置位选码初值

MOVA,R3

LOOP:

MOVDPTR,#7F01H;DPTR-PA口地址

MOVX@DPTR,A;输出位选码

INCDPTR;指向PB口

MOVA,@R0;取被显示的数据

ADDA,#0DH;形成查表的偏移地址

MOVCA,@A+PC;求出显示代码

DIR1:

MOVX@DPTR,A;输出显示代码

ACALLTIM2;延时

INCR0;指向下一个显示数据

MOVA,R3

JBACC.5,LOOP1;判断6位是否显示完毕

RLA;形成下一个位代码

MOVR3,A

AJMPLOOP

LOOP1:

RET

DB3FH,06H,5BH,4FH,66H,6DH

DB7DH,07H,7FH,6FH,77H,7CH

DB39H,5EH,79H,71H

TIM2:

MOVR7,#04H

DLT1:

MOVR6,#0FFH

DLT2:

DJNZR6,DLT2

DJNZR7,DLT1

RET

图3.3.1显示原理框图

地址空间的分配:

0000H~3FFFH:

实验机上的扩展后8031上的RAM,数据存储空间。

000H~7F3FH:

实验机上的RAM区,用作程序区和数据区。

7F40H~7FFFH:

实验机上的RAM,有监控占用,用户不得使用

8000H~BFFFH:

为138译码器的地址,用户对实验机上的AD芯片的片选CS/相连,则该输出脚的译码地址即为AD芯片的编程地址。

FE00H~FFFFH:

实验机上的固定地址的I/O口。

第四章设计总结

随着集成电路和计算机技术的迅速发展,使电子仪器的整体水平发生巨大变化,传统的仪器逐步的被智能仪器所取代。

智能仪器的核心部件是单片机,因其极高的性价比得到广泛的应用与发展,从而加快了智能仪器的发展。

而传感器作为测控系统中对象信息的入口,越来越受到人们的关注。

传感器好比人体“五官”的工程模拟物,它是一种能将特定的被测量信息(物理量、化学量、生物量等)按一定规律转换成某种可用信号输出的器件。

本次课设中的位移测量仪就是在以上仪器的基础上设计而成的。

因此,只有充分了解有关智能仪器、单片机、传感器以及各部分之间的关系才能达到要求。

首先是传感器的精密度,它将直接影响电子秤的称重准确度。

课设时由于传感器发出的信号不是很稳定,所以测量时误差很大。

其次是数据采集处理阶段,此阶段是对传感器发出的信号进行量化、采集,主要分为信号放大、采集,然后进行A/D转换。

该阶段需注意的地方是对传感器输出的信号进行放大时,应选取合适的运算放大电路。

最好是预先计算好应放大的倍数,以便选取。

还有就是进行数据处理时,选取适当的数据转换系数,使输出满足量程要求。

参考文献

1霍孟友单片机原理与应用.北京:

机械工业出版社,2007

2冯凯昉工程测试技术.陕西:

西北工业大学出版社,1994

3林敏丁金华田涛计算机控制技术及工程应用.北京:

国防工业出版社,2006

4秦曾煌电工学.北京:

高等教育出版社,2005

5黄贤武传感器技术.苏州:

苏州大学出版社,1993

6常健生检测与转换技术.北京:

机械工业出版社,1992

7贾伯年俞朴传感器技术.南京:

东南大学出版社,1990

8赵茂泰.智能仪器原理及应用.电子工业出版社,2004:

9张毅刚.MCS-51单片机应用设计.哈尔滨工业大学出版社,2003:

10贾伯年,俞朴.传感器技术.东南大学出版社,2000:

11单成祥.传感器理论设计基础及其应用.国防工业出版社,1999:

12李道华,李玲,朱艳.传感器电路分析与设计.武汉大学出版社,2000:

附总电路图

附总程序

A_DPORTEQU8100H;0809口地址

Z8279EQU0FF82H;8279状态/命令口地址

D8279EQU0FF80H;8279数据口地址

LEDMODEQU10H;右端输入八位字符显示

;外部译码键扫描方式,双键互锁

LEDFEQEQU38H;扫描速率

LEDCLSEQU0D1H;清除

LEDWR0EQU80H;设定的将要写入的显示RAM地址

ORG0000H

AJMPSTART

ORG0003H

LJMPINT_0

ORG0040H

START:

MOVR7,#00H

MOVR0,#60H;

MOVSP,#80H

SETBIT0

SETBEA

SETBEX0

LCALLINIT8279;初始化8279

A_D:

MOVR0,#00H;通道数

MOVA,R0

MOVDPTR,#A_DPORT

ORLDPL,A

MOVX@DPTR,A;启动A_D

;MOVP1,#00H

CJNER7,#00H,$;等待A_D转换结束

MOVA,B

MOVP1,A

LCALLBCD_SORT;

MOVR7,#0FFH;清读数标志

MOVR6,A

MOVR4,#01H

LCALLDISLED

MOVR6,B

MOVR4,#00H

DECR3;

;LCALLDISLED

LCALLDELAY_LO;

AJMPA_D

INT_0:

MOVXA,@DPTR;读A_D数据

MOVB,A

MOVR7,#00H;置读数标志

RETI

BCD_SORT:

MOVA,B;

RLA;

MOVB,#0AH;

DIVAB;

RET

INIT8279:

;8279初始化子程序

PUSHDPH;保存现场

PUSHDPL

PUSHACC

LCALLDELAY;延时

MOVDPTR,#Z8279

MOVA,#LEDMOD;置8279工作方式

MOVX@DPTR,A

MOVA,#LEDFEQ;置键盘扫描速率

MOVX@DPTR,A

MOVA,#LEDCLS;清除LED显示

MOVX@DPTR,A

LCALLDELAY;延时

MOVDPTR,#Z8279

MOVA,#90H

MOVDPTR,#D8279

MOVA,#40H

MOVX@DPTR,A

MOVA,#40H

MOVX@DPTR,A

MOVA,#0H

MOVX@DPTR,A

MOVA,#0H

MOVX@DPTR,A

MOVA,#0EFH

MOVX@DPTR,A

MOVA,#27H

MOVX@DPTR,A

MOVA,#5BH

MOVX@DPTR,A

MOVA,#7FH

MOVX@DPTR,A

POPACC;恢复现场

POPDPL

POPDPH

RET

;显示字符子程序

;输入:

R4,位置R5,值

DISLED:

PUSHDPH;保存现场

PUSHDPL

PUSHACC

MOVA,#LEDWR0;置显示起始地址

ADDA,R4;加位置偏移量

MOVDPTR,#Z8279

MOVX@DPTR,A;设定显示位置

MOVDPTR,#LEDSEG;置显示常数表起始位置

MOVA,R6

MOVCA,@A+DPTR;查表

MOVDPTR,#D8279

MOVX@DPTR,A;显示数据

POPACC;恢复现场

POPDPL

POPDPH

RET

DELAY:

;延时子程序

PUSH0;保存现场

PUSH1

MOV0,#0H

DELAY1:

MOV1,#0H

DJNZ1,$

DJNZ0,DELAY1

POP1;恢复现场

POP0

RET

DELAY_LO:

PUSH0

PUSH1

PUSH2

MOV0,#01H;

DELAY_LO1:

MOV1,#00H

DELAY_LO2:

MOV2,#0B2H;

DJNZ2,$

DJNZ1,DELAY_LO2

DJNZ0,DELAY_LO1

POP2

POP1

POP0

RET

LEDSEG:

DB3FH,06H,5BH,4FH,66H,6DH,7DH,07H;'0,1,2,3,4,5,6,7'

DB7FH,6FH,77H,7CH,39H,5EH,79H,71H;'8,9,A,B,C,D,E,F'

DB6DH,02H,08H,00H,59H,0FH,76H;''

END

0R22

6

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2