外文翻译自动焊接操作系统精品.docx

上传人:b****5 文档编号:14626496 上传时间:2023-06-25 格式:DOCX 页数:23 大小:399.28KB
下载 相关 举报
外文翻译自动焊接操作系统精品.docx_第1页
第1页 / 共23页
外文翻译自动焊接操作系统精品.docx_第2页
第2页 / 共23页
外文翻译自动焊接操作系统精品.docx_第3页
第3页 / 共23页
外文翻译自动焊接操作系统精品.docx_第4页
第4页 / 共23页
外文翻译自动焊接操作系统精品.docx_第5页
第5页 / 共23页
外文翻译自动焊接操作系统精品.docx_第6页
第6页 / 共23页
外文翻译自动焊接操作系统精品.docx_第7页
第7页 / 共23页
外文翻译自动焊接操作系统精品.docx_第8页
第8页 / 共23页
外文翻译自动焊接操作系统精品.docx_第9页
第9页 / 共23页
外文翻译自动焊接操作系统精品.docx_第10页
第10页 / 共23页
外文翻译自动焊接操作系统精品.docx_第11页
第11页 / 共23页
外文翻译自动焊接操作系统精品.docx_第12页
第12页 / 共23页
外文翻译自动焊接操作系统精品.docx_第13页
第13页 / 共23页
外文翻译自动焊接操作系统精品.docx_第14页
第14页 / 共23页
外文翻译自动焊接操作系统精品.docx_第15页
第15页 / 共23页
外文翻译自动焊接操作系统精品.docx_第16页
第16页 / 共23页
外文翻译自动焊接操作系统精品.docx_第17页
第17页 / 共23页
外文翻译自动焊接操作系统精品.docx_第18页
第18页 / 共23页
外文翻译自动焊接操作系统精品.docx_第19页
第19页 / 共23页
外文翻译自动焊接操作系统精品.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

外文翻译自动焊接操作系统精品.docx

《外文翻译自动焊接操作系统精品.docx》由会员分享,可在线阅读,更多相关《外文翻译自动焊接操作系统精品.docx(23页珍藏版)》请在冰点文库上搜索。

外文翻译自动焊接操作系统精品.docx

外文翻译自动焊接操作系统精品

Anautomatedweldingoperationplanningsystem

forblockassemblyinshipbuilding

Kyu-KabCho*,Jung-GuySun,Jung-SooOh

Abstract

Theblockassemblyprocessisoneofthemostimportantmanufacturingprocessesforshipbuilding.Sinceblockiscomposedofseveralsteelplatesandsteelsectionswithpredeterminedshapesaccordingtoshipdesign,theweldingoperationplanningtoconstructablockisacriticalactivityforshipbuilding,butthisactivityhastraditionallybeenexperiencebased.Thus,itisrequiredtodevelopanautomatedweldingoperationplanningsystemtoassembleblocks.Thispaperdescribesthedevelopmentofanautomatedweldingoperationplanningsystemforblockassemblyinshipbuilding.Basedontheinformationaboutparts,topologicalrelationshipbetweenpartsandassemblysequencesforblock,thedevelopedsystemperformsthedeterminationofweldingpostures,weldingmethods,weldingequipmentandweldingmaterials.Thedevelopedsystemimplementedsuccessfullyforrealblocksconstructedinshipyard.

Keywords:

Blockassembly;Expertsystem;Operationplanning;Weldingprocess

1.Introduction

Shipbuildingistraditionallyalabor-intensiveassemblyindustrythatemploystheweldingprocessasabasicproductiontechnology.Inshipbuilding,thereareseveraltypesofmanufacturingprocessplanningforcuttingandbending,assembly,out-fitting,anderection.Amongtheseprocessplanningactivities,theassemblyprocessplanningisbyfarthemostimportant,sincetheconstructionprocessforahullblockcomprisesapproximately48~50%ofthetotalshipbuildingprocess[1,2].Themainoperationforblockassemblyistheweldingoperation.Theweldingoperationplanningproblemsinblockassemblyareverydifficulttosolvebecauseallblocksaredifferentinsize,type,andconstitutingsub-assembliesthatdependonthetypesofships.Also,sincethisactivityhastraditionallybeenexperienced-based,weldingoperationplanninginshipbuildinghasbeenperformedmanually.Thus,itisveryimportanttodevelopanautomatedwelding

operationplanningsystemforshipbuilding.Thereisrelativelyverylittleliteratureavailableonautomatedweldingoperationplanningsystemsforshipbuilding[3,4].

Thispaperdealswiththedevelopmentofanautomatedweldingoperationplanningsystemforblockassemblyinshipbuilding.Therule-basedexpertsystemforweldingoperationshasbeendevelopedusingSmartElementsasanexpertsystemtool.Thedevelopedsystemisdemonstratedandverifiedbyusingactualblocksintheshipyard.

2.Developmentofanautomatedweldingoperationplanningsystem

2.1.Systemframework

Theautomatedweldingoperationplanningsystemdevelopedinthispaperconsistsoffourmodules:

weldingposturesmodule,weldingmethodsmodule,weldingequipmentmodule,andweldingmaterialsmodule.TheframeworkofthissystemisshowninFig.1.

2.2.Determinationofweldingpostures

Thismoduledeterminesthepostureoftheweldingoperator.Weldingpostureisreasonedbyconsideringconnectiontypesandpositionaldirectionbetweentwoconnectedparts,directioninformationofassemblybasepart,existenceofturnover,andassemblylevel.

Connectiontypesareclassifiedintobutttype(B)andfillettype(T),asshowninFig.2.Thefourtypesofweldingpostures,downposture(D),overheadposture(O),horizontalposture(H),andverticalposture(V),areconsideredinthispaper,asshowninFig.2[5,6].Themoststableandeasiestweldingpostureisthedownweldingposture,andthemostdifficultoneistheoverheadweldingposture.Theweldingoperatordeterminesanefficientweldingpostureaccordingtotheworkingconditions.

Forrelationshipofconnectionbetweentwopartsthatarewelded,onepartisconsideredasthebaseandtheotherisconnectedtothebase.ThepartthatisconsideredasabaseisrepresentedasPartFromandtheotherthatisconnectedtothebaseisrepresentedasPartTo.

Thelevelsofblockassemblytoassemblesteelplatesandsectionsintothefinalblockareclassifiedintosubassembly(SA)level,unitblockassembly(UBA)level,andfinalblockassembly(FBA)level.Subassemblylevelsmaybedividedintosmallsubassembly(SSA)levelsandintermediatesubassembly(ISA)levelsaccordingtothesizeandweightofthesubassemblyasshowninFig.3.

Fordeterminingweldingpostures,theblockassemblylevelsareclassifiedintotwogroups.Thefirstgroupisthesmallsubassemblylevel;thesecondgroupconsistsoftheintermediatesubassembly,theunitblockassembly,andthefinalblockassemblylevels.Thereasonforthisgroupingisthatthereisnoturnoverprocessinthesmallsubassembly

level,buttheassemblylevelsbelongingtothesecondgroupmayhaveturnoverprocesses.Turnoverprocessescausethechangeofweldingposturesthataredeterminedbeforetheturnoverprocess.

2.2.1.Determiningweldingposturesinthefirstgrouplevel

Thefollowingareexamplesofrulestodeterminetheweldingpostureforasmallsubassemblylevel.Theconnectiontypesofweldingjointsbetweentwopartsusedinthisruleare:

Butttype(0)andTtype

(1).

(1)IF(PartLevel=SmallAssembly)

(ConnectionType=1)

(DirectionofAssemblyBase=ConnectionDirection)

(PartFrom=notAssemblyBasePart)

(PartTo=notAssemblyBasePart)

THEN(WeldingPosture=H)

(2)IF(PartLevel=SmallAssembly)

(ConnectionType=1)

(DirectionofAssemblyBasePart=notConnectionDirection)

(PartFrom=notAssemblyBasePart)

(PartTo=notAssemblyBasePart)

THEN(WeldingPosture=V)

AnexampleofasmallsubassemblyisshowninFig.4.Inthiscase,thereareÞveparts,andtheassemblybasepartsareAandB.TherelationshipsbetweenthepartsarelistedinTable1andtheresultsofthedeterminationofweldingposturesforthisexampleareshowninTable2.

2.2.2.Determiningweldingposturesinthesecondgrouplevels

Inthesecondgrouplevels,informationfordeterminingweldingposturesisthesameasforthesmallsubassemblylevel.Weldingposturesaredeterminedbetweentheassemblybasepartandotherpartsthatareconnectedtotheassemblybasepartinasimilarwaytothesmallsubassembly.Otherweldingposturesaredeterminedbetweenpartsthatarenotanassemblybasepart.Ifturnoverprocessesexist,thedirectionoftheassemblybasepartischangedatanangleof180°andtheweldingpostureisalsochanged.Anexampleoftherulesforthesecondgrouplevelsareasfollows:

(1)IF(PartLevel=notSmallAssembly)

(ConnectionTypeis0)

(DirectionofAssemblyBasePart=ConnectionDirection)

(PartFrom=notAssemblyBasePart)

(PartTo=notAssemblyBasePart)

THEN(WeldingPosture=H)

(2)IF(PartLevel=notSmallAssembly)

(ConnectionType=0)

(DirectionofAssemblyBasePart=notConnectionDirection)

(PartFrom=notAssemblyBasePart)

(PartTo=notAssemblyBasePart)

THEN(WeldingPosture=V)

2.3.Determinationofweldingmethods

Thismoduledeterminestheweldingmethodsbasedonweldingposturesbyrule-basedreasoning.WeldingmethodsusedinthispaperaresummarizedinTable3,accordingtotheconnectiontypesofweldingjointsandweldingprocesses[7].

Ingeneral,thereareseveralweldingtechniquessuchasbrazewelding,forgewelding,gaswelding,resistancewelding,inductionwelding,arcwelding,andspecialwelding.Consideringthefeaturesofshipbuilding,theweldingprocessusedintheshipyardisthearcweldingprocess.Arcweldingisaprocessinwhichcoalescenceisobtainedbyheatproducedfromanelectricarcbetweentheworkandanelectrode[8].

Arcweldingisclassifiedintoseveraltypes,accordingtotheweldingmechanismssuchasshieldmetalarcwelding(SMAW),fluxcoredarcwelding(FCAW),submergedarcwelding(SAW),andelectrogasarcwelding(EGW).SMAWisoneoftheoldest,simplest,andmostversatilejoiningprocesses.Currently,about50%ofmostindustrialandmaintenanceweldingisperformedbythisprocess,butthisprocessisusedapproximatelylessthan5%atmostlargeshipyards.InFCAW,anelectrodethatistubularinshapeisused,andifnecessary,theweldingareaisshieldedbycarbondioxide.InSAW,theweldarcisshieldedbygranularflux,consistingoflime,silica,manganeseoxide,calciumfluoride,andothermaterials.Thefluxisfedintotheweldzonebygravityflowthroughanozzle.EGWisusedprimarilyforweldingtheedgesofsectionsverticallyinonepass,withthepiecesplacededgetoedge(butttype)[9].

Tobuildtheknowledgebaseforthedeterminationofweldingmethods,knowledgeisaquiredfromweldinghandbooksandexperts.InputinformationofthismoduleisgeometricalinformationthatisprovidedfromCADsystemandtheweldingposturedeterminedbyweldingposturedeterminationmodule.Theknowledgeisrepresentedbyrules.Theexamplesoftheruleforthedeterminationofweldingmethodsareasfollows:

(1)IF(ConnectionType=0)

(Groove=none)

(WeldingPosture=O)

(6≤Thickness≤50)

THEN(WeldingMethod=SMAW-MANUALBUTT)

(2)IF(ConnectionType=1)

(LegLength≥4.5mm)

(WeldingPosture=O,H,V)

THEN(WeldingMethod=FCAW-FILLET)

2.4.Determinationofweldingequipment

Thismoduleselectstheappropriateweldingequipmentbyrule-basedreasoningbasedoninformationaboutweldingposturesandweldingmethods.Table4showstherelationshipbetweenweldingmethodsandweldingequipment.Afterdeterminingweldingmethods,weldingequipmentisautomaticallyselectedbyusingtheinformationcontainedinTable4.

2.5.Determinationofweldingmaterials

Thismoduledeterminesthemostproperweldingmaterialsbyrule-basedreasoning,basedoninformationaboutweldingpostures,methods,andequipment.Ingeneral,steelsusedforblockassemblyaremildsteelsandhightensilesteels.Mild

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2