ANSYS10使用方法与一般步骤Word格式.docx

上传人:b****2 文档编号:1464860 上传时间:2023-04-30 格式:DOCX 页数:20 大小:172.69KB
下载 相关 举报
ANSYS10使用方法与一般步骤Word格式.docx_第1页
第1页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第2页
第2页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第3页
第3页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第4页
第4页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第5页
第5页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第6页
第6页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第7页
第7页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第8页
第8页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第9页
第9页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第10页
第10页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第11页
第11页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第12页
第12页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第13页
第13页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第14页
第14页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第15页
第15页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第16页
第16页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第17页
第17页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第18页
第18页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第19页
第19页 / 共20页
ANSYS10使用方法与一般步骤Word格式.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

ANSYS10使用方法与一般步骤Word格式.docx

《ANSYS10使用方法与一般步骤Word格式.docx》由会员分享,可在线阅读,更多相关《ANSYS10使用方法与一般步骤Word格式.docx(20页珍藏版)》请在冰点文库上搜索。

ANSYS10使用方法与一般步骤Word格式.docx

二、ANSYS的坐标系

ANSYS提供了以下几种坐标系,每种都有其特定的用途。

1全局坐标系与局部坐标系:

用于定位几何对象(如节点、关键点等)的空间位置。

2显示坐标系:

定义了列出或显示几何对象的系统。

3节点坐标系:

定义每个节点的自由度方向和节点结果数据的方向。

4单元坐标系:

确定材料特性主轴和单元结果数据的方向。

1•全局坐标系和局部坐标系

全局坐标系和局部坐标系是用来定位几何体。

在默认状态下,建模操作时使用的坐标系是全局坐标系

即笛卡尔坐标系。

总体坐标系是一个绝对的参考系。

ANSYS提供了四种全局坐标系:

笛卡尔坐标系、柱

坐标系、球坐标系、Y-柱坐标系。

4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:

0是笛卡尔坐标系(cartesian),1是柱坐标系(Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical)。

如图2-1所示:

¥

<

CS,O)Caliban<

CS,I>

CyiindrkaJ(CSJJ茅phowU(CS,5>

Cylindncal

图2“ANSYS的全周坐标系

ANSYS引用坐标系x轴、Y轴、z轴代表不同的意义,笛卡尔坐标系的X轴、Y轴、Z轴分别代表其原始意义;

柱坐标系的x轴、Y轴、z轴分别代表径向R、轴向0和轴向Z;

球坐标系的X轴、Y轴、z轴分别代表R、O、p。

(注意:

4种全局坐标系有共同的原点)

2•局部坐标系

局部坐标系是用户为了方便建模及分析的需要自定义的坐标系,可以和全局坐标系有不同的原点、角

度、方向。

1)通过当前激活的工作平面的原点为中心来建立局部坐标系

1Command方式:

CSWPLA,KCN,KCS,pARl,PAII2

a•KCN:

坐标系编号。

KCN是大于10的任何一个编号。

b•KCS:

局部坐标系的属性。

KCS=O时为笛卡尔式坐标系;

KCS=1时为柱坐标系;

KCS=2时为球坐标系:

KCS-3时为环坐标系:

KCS-4时为工作平面坐标系:

KCS=5时为柱坐标系。

c.PAR1:

应用于椭圆、球或螺旋坐标系。

当KCS=1或2时,PAR1是椭圆长短半径(Y/X)的比

值,默认为1(圆):

当KCS=3时,PARI是环形的主半径。

d.PAR2:

应用于球坐标系,当KCS=2时,PAR2是椭球Z轴半径与x轴半径的比值,默认为1(圆)。

2GUI方式:

WorRPIane>

LocalCoordinateSystems>

CreateLocalCS>

AtWPOrigin

2)通过已定义的关键点来建立局部坐标系

CSKP,KCN,KCS,PORIG,PXAXS,PXYPL,PARI,pAR2

a.KCN:

b.KCS:

KCS=0时为笛卡尔式坐标系;

KCS=1时为柱坐标系;

KCS=2时为球坐标系:

KCS=3时为环坐标系;

KCS=4时为工作平面坐标系;

c.PORIG:

以该关键点为新建坐标系原点,若该值为P,则可进行GUI选取关键点操作。

d.pXAXS,定义x轴的方向,原点指向该点方向为x轴正向,

e.PXYPL:

定义Y轴的方向,若该点在x轴的右侧,则Y轴在x轴的右侧,反之在左侧。

•划分网格:

第一节基本知识

几何实体模型并不参与有限元分析,所有施加在有限元边界上的载荷或约束,必须最终传递到有限元

模型上(节点和单元)进行求解。

因此,在完成实体建模之后,要进行有限元分析,需先对模型进行网格划分一一将实体模型转化为能够直接计算的网格,生成节点和单元。

一、有限元网格概述

1•网格类型

总的来说,ANSYS的网格划分有两种:

自由网格划分(Freemeshing)和映射网格划分(Mapped

meshing),如图3—1所示。

自由网格划分主要用于划分边界形状不规则的区域,它所生成的网格相互之间是呈不规则排列的。

于复杂形状的边界常常选择自由网格划分。

自由网格对于单元形状没有限制,也没有特别的应用模式。

缺点是分析精度往往不够高。

与自由网格划分相比较,映射网格划分对于单元形状有限制,并要符合一定的网格模式。

映射面网格

只包含四边形或三角形单元,映射体网格只包含六面体单元。

映射网格的特点是具有规则的形状,明显地成行排列。

自由网格W映射期格

图芥【口由阿搐和映射网格

一般来说映射网格往往比自由网格划分得到的结果要更加精确,而且在求解时对CPU和内存的需求

也相对要低些。

如果用户希望用映射网格划分模型,创建模型的几何结构必须由一系列规则的体或面组成,

这样才能应用于映射网格划分。

因此,如果确定选择映射网格,需要从建立几何模型开始就对模型进行比较详尽的规划,以使生成的模型满足生成映射网格的规则要求。

>

3-1ANSYS支持的单元形状与网格类型

单兀薦状

超否可以自由期格划井

是否町以映躯胸格划分

壘可頌由网格划分乂町以映射网格划分

2.划分网格的过程

在ANSYS程序当中,有限元的网格是由程序自己来完成的,用户所要做的就是通过给出一些参数和

命令来对程序实行宏观调控”网格划分过程的3个步骤如下:

1定义单元属性定义单元属性的操作主要包括定义单元类型、定义实常数和定义材料属性等。

2定义网格划分控制程序提供了大量的网格生成控制,用户可以根据模型的形状和单元特点选用。

3生成网格其中第②步的设置有时是不需要的,因为默认网格控制对许多模型都是适用的。

可定义单元属性对于网格划分来说是必不可少的,它不仅影响到网格划分,而且对求解的精度也有很大影响。

二、定义单元属性

在生成节点和单元网格之前,必须定义合适的单元属性。

1•定义单元类型

在有限元分析过程中,对于不同的问题,需要应用不同特性的单元,单元选择不当,直接影响到计算能否进行和结果的精度。

ANSYS的单元库中提供了200多种单元类型,每个单元都有唯一的编号。

LINK(12)1,8,10,11,31,32,33,34,68,160,167,180

PLANE(20)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223

BEAM(09)3,4,23,24,44,54,161,188,189

SOLID(30)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,1

64,168,185,186,187,191,226,227

COMBIN(05)7,14,37,39,40

INFIN(04)9,47,110,111

CONTAC(05)12,26,48,49,52

PIPE(06)16,17,18,20,59,60

MASS(03)21,71,166

MATRIX(02)27,50

SHELL(19)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209

FLUID(14)29,30,38,79,80,81,116,129,130,136,138,139,141,142

SOURC(01)36

HYPER(06)56,58,74,84,86,158

VISCO(05)88,89,106,107,108

CIRCU(03)94,124,125

TRANS(02)109,126

INTER(05)115,192,193,194,195

HF(03)118,119,120

ROM(01)144

SURF(04)151,152,153,154

COMBI(01)165

TARGE(02)169,170

CONTA(06)171,172,173,174,175,178

PRETS(01)179

MPC(01)184

MESH(01)20

下面用GUI的方式介绍定义单元类型的常用操作步骤:

1

/Fxlit/Delete命令,弹出如图3-2所

选择MainMenu>

Preprocessor>

ElementType>

Add

示的ElementType对话框(初次定义时,列表框中显示

“NONEDEFINED,表示没有任何单元被定义)。

2

对话框。

可以看到,列表框中列岀了单元库中

单击Add…按钮,弹出LibraryofElementTypes

的所有单元类型。

左侧列表框中显示的是单元的分类,右侧列表框为单元的特性和编号,选择单元时应该

先明确自己要定义的单元类型,如

LINK、PLANE、BEAM和SOLID等,然后从右边列表框中选择合适

的单元。

单击OK按钮即可。

4

Elementtypereferencenumber

此时,单击Apply按钮,可继续添加别的单元类型,同时

本框中的数值将自动变为“1”。

下面是有关ANSYS分析中的单元选择方法:

一、单元类型选择概述:

ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;

单元类型选择方法:

1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;

二、单元类型选择方法(续一)

2.根据模型的几何形状选定单元的大类,如线性结构则只能用“PlaneShell这种单元去模拟;

3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,

有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;

三、单元类型选择方法(续二)

4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“SolidQuad”,

此时有四种单元类型:

Quad4node42Quad4node183Quad8node82Quad8node183前两组即为低阶单元,后两组为高阶单元;

四、单元类型选择方法(续三)

5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是六面体”还是四面

体”确定单元类型为“Brick还是“Tet”;

五、单元类型选择方法(续四)

6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选

择,如下:

2Delastic32Dplastic232Dtapered54,根据分析问题是弹性还是塑性确定为“Beam3

或“Beam4,若是变截面的非对称的问题则用“Beam54。

六、单元类型选择方法(续五)

7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单

元的帮助手册,进行以下工作:

仔细阅读其单元描述,检查是否与分析问题的背景吻合、

了解单元所需输入的参数、单元关键项和载荷考虑;

了解单元的输岀数据;

仔细阅读单元使用限制和说明。

第二节逻辑选择

若用户只对模型的某一部分进行操作处理,如加载、有选择性地观察结果等,则可利用选择功能。

选择功能可以选择节点、单元、关键点、线、面、体等子集,以便能够在该部分实体上进行操作。

利用选择功能的典型例子包括施加载荷、列岀子集结果、或者是绘制所选实体等。

选择功能的另一个有用特征是能够选择实体的子集并给这个子集命名。

例如:

可以选择组成水泵叶片部分的所有单元,并把它命名为子集blade。

像这样命名的子集叫做元件,几个元件组成一个部件。

进入ANSYS选择Select菜单,操作命令为GUI:

UtilityMenu>

Select。

一、选择实体

1•实体类型

运行选择实体的操作命令GUI:

Select>

Entities,弹出实体选择对话框,如图4-1

所示。

实体类型包括Nodes、Elements、Volumes、Areas、Lines、Keypoints。

2•选择准则

选择准则与实体类型有关,不同的实体类型对应不同的选择准则。

如选择节点的准则有:

1ByNum/Pick项,通过实体号或通过拾取操作进行选择。

2Attachedto项,通过实体的隶属关系进行选择。

3ByLocafion项,根据X,Y,Z坐标位置选择。

4ByAttributes项,根据材料号、实常数号等进行选择,不同的实体所用的属性不相同。

5Exterior项,选择模型外边界的实体。

6ByResults项,根据结果数据选择。

3•选择方式

选择实体的方式有七种,如图4-2所示。

各项的含义为:

1FromFull项,从整个实体集中选择一个子集,阴影部分表示活动子集。

2Reselect项,从选中的子集中再选择一个子集,逐步缩小子集的选择范围。

3AlsoSelect项,在当前子集中添加另外一个不同的子集。

4Unselect项,从当前子集中去掉一部分,与Reselect的选择刚好相反

5SelectAll项,恢复选择整个全集。

6SelectNone项,选择空集。

7

Invert项,选择当前子集的补集。

二、Comp/Assembly功能

此项为构件和部件的创建和选择功能菜单。

用户可以将一些常用实体组合构造成一个构件

Component,并给这个构件赋予一个构件名。

也可以将多个构件组合构造成一个部件集合Assembly,

部件也有自己的名字。

在选择实体模型时,用户可以随时通过该项对应的名称来访问构成这些构件和部件的实体。

操作命令有GUI:

Comp/Assembly。

下面对Comp/Assembly子菜单中各功能选项进行介绍。

1.CreateComponent生成构件

GUI:

Comp/Assembly>

CreateComponent。

在执行上述操作之前,必须先选择实体类型如节点、单元等。

当选择组成元件的实体,执行该命令后,会弹出CreateComponent的对话框,输入创建的构件名,单击0K键结命令。

2.CreateAssembly生成部件

Com/Assembly>

CreateAssembly。

选定要构成部件的所有构件,运行上述菜单,弹岀生成部件对话框,在此窗口输入所要创建部件的名

字,即可创建由这些构件构成的部件。

3.EditAssembly编辑部件

/Assembly>

EditAssembly

Comp

运行上述菜单,弹出EditAssembly对话框可以对部件进行编辑。

选定要编辑的部件,可以对其中

的构件进行删除操作,也可以向部件中添加构件。

4.SelectComp/Assembly选择构件/部件

GU:

UtilityMenu>

SelectComp/Assembly。

运行上述菜单,弹出SelectComponentAssembly窗口,可对先前定义的构件或者部件进行选取。

5.ListComp/Assembly列出构件/部件

ListComp/Assembly。

•加载与求解:

施加载荷是有限元分析中关键的一步,可以对网格划分之后的有限元模型施加载荷,也可以直接对实

体模型施加载荷。

当对模型进行了划分网格和施加载荷之后,就可以选择适当的求解器对问题进行求解。

一、载荷的分类

ANSYS中载荷(Loads)包括边界条件和模型内部或外部的作用力。

不同的学科中,载荷的定义:

1结构分析:

位移、力、压力、弯矩、温度和重力。

2热分析:

温度、热流率、对流、内部热生成、无限远面。

3磁场分析:

磁势、磁流通、磁电流段、源电密度、无限远面。

4电场分析;

电势(电压)、电流、电荷、电荷密度、无限远面。

5流场分析:

速度、压力。

在ANSYS中,载荷主要分为六大类:

DOF约束(自由度约束)、力(集中载荷)、表面载荷、体载荷、

惯性力及耦合场载荷,它们的含义为如下。

1DOF约束(DOFconstraint):

用户指定某个自由度为已知值。

在结构分析中约束是位移和对称边界条件;

在热力学分析中约束是温度和热流量等。

2力(集中载荷)(Fome):

施加于模型节点的集中载荷。

如结构分析中的力和力矩,热分析中的热流率。

3表面载荷(SurfaceLoad):

作用在某个表面上的分布载荷。

如结构分析中的压力,热分析中的对流和热流量。

4体载荷(Bodyloads):

作用在体积或场域内。

如结构分析中的温度和重力,热分析中的热生成率。

5惯性载荷(Inertialoads):

结构质量或惯性引起的载荷。

如重力加速度、角速度和角加速度,主

要在结构分析中使用。

6耦合场载荷(Coupled-fieldloads):

它是一种特殊的情况,从一种分析中得到的结果用作另一种分析的

载荷;

如热分析中得到的节点温度可作为结构分析中的体载荷施加到每一个节点。

二、载荷步、子步和平衡迭代

1.载荷步

载荷步是指分步施加的载荷,在线性静态分析或稳态分析中,可以使用不同的载荷步来施加不同的载荷组合。

如图5-1所示,第一个载荷步用于线性载荷,第二个载荷步用于常数载荷部分,第二个载荷步用于卸载。

2•子步

子步是指在一个特定的载荷步中每一次增加的步长,也称为时间步,代表一段时间。

对于不同的分析

图5」多个栽荷步

类型,子步的作用不同:

1在非线性静态分析或稳态分析中,使用子步逐渐施加载荷以便能获得精确解。

2在线性或非线性瞬态分析或稳态分析中,使用于步满足瞬态时间积分法则(为获得精确解,通常规

定一个最小的时间步长)。

3在谐波分析中,使用于步可获得谐波频率范围内多个频率处的解。

3.阶跃载荷和坡度载荷

在一个载荷步中,有两个或者两个以上的载荷步子步时,就必须选择所施加的载荷应该为阶跃载荷还

是为坡度载荷。

所谓阶跃载荷,就是指在第一个子步全部施加上去了,载荷在以后的每个子步中保持不变。

坡度载荷就是指在每一个载荷步子步,载荷值都是递增的,直到最后一个载荷步子步,全部的载荷才施加上去。

4.平衡迭代

平衡迭代仅应用于收敛起着很重要作用的非线

子步步数或者说时间步大小、阶跃载荷、热

StepOpts命令展开载荷步选项菜单。

选择

平衡迭代是指在给定子步下为了收敛而计算的附加解。

性分析(静态或瞬态)中的迭代修正。

三、通用选项

通用选项包括瞬态或者静态分析当中载荷步结束的时间、应力当中的参考温度。

选择MainMenu>

Solution>

Load

MainMenu>

LoadStepOpts>

Time/Frequent>

Time-TimeStep命令,弹出如图5-2

所示的对话框。

如果展开的载荷步选项菜单不完全,选择MainMenu>

Unabridgad

Menu命令即可)

TIME命令在与速率有关的问题当中是指实际的时间,要求指定一个时间值;

在与速率无关的问题里

面,时间是一个用作跟踪载荷的参数。

显然,无论哪一种情况,都不能将时间设置为0。

DELTIM命令是给ANSYS程序分析指定时间步的大小,在通用选项的另外一个窗口Timeand

SubstepOptions当中,ANSYS程序是要通过NSUBST命令来指定分析过程当中的子步的大小。

KBC命令是指定载荷的施加是采用阶跃式还是采用坡度式(线性方式)。

-后处理:

对模型进行有限元分析后,通常需要对求解结果进行查看、分析和操作。

检查并分析求解的结果的相

关操作称为后处理。

用ANSY$软件处理有限元问题时,建立有限元模型并求解后,并不能直观地显示求解结果,必须用

后处理器才能显示和输出结果。

检查分析结果可使用两个后处理器:

通用后处理器POST1和时间历程后

处理器POST26。

输出形式可以有图形显示和数据列表两种。

一、通用后处理器POST1

这个模块用来查看整个模型或者部分选定模型在某一个时刻(或频率)的结果。

对前面的分析结果能以

图形、文本形式或者动画显示和输岀,如各种应力场、应变场等的等值线图形显示、变形形状显示以及检查和解释分析的结果列表。

另外还提

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 数学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2