十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx

上传人:b****1 文档编号:14861083 上传时间:2023-06-27 格式:DOCX 页数:47 大小:47.72KB
下载 相关 举报
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第1页
第1页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第2页
第2页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第3页
第3页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第4页
第4页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第5页
第5页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第6页
第6页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第7页
第7页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第8页
第8页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第9页
第9页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第10页
第10页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第11页
第11页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第12页
第12页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第13页
第13页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第14页
第14页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第15页
第15页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第16页
第16页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第17页
第17页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第18页
第18页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第19页
第19页 / 共47页
十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx_第20页
第20页 / 共47页
亲,该文档总共47页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx

《十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx》由会员分享,可在线阅读,更多相关《十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx(47页珍藏版)》请在冰点文库上搜索。

十二五 863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书.docx

十二五863计划生物和医药技术领域专题项目生物能源关键技术研究与开发项目建议书

 

“十二五”863计划生物和医药技术领域专题项目

 

生物能源关键技术研究与开发

项目建议书

 

863计划生物和医药技术领域办公室

摘要

石油资源短缺已成为制约我国经济发展的瓶颈,国家高度重视可再生能源的发展,在《国家中长期科学和技术发展规划纲要》和《国家可再生能源中长期发展规划》中都明确提出了我国生物能源科技和产业发展的目标。

发展生物能源对于保障国家能源安全,推动新能源战略新兴产业发展,改善生态环境,促进农民增收,都具有重要意义。

“十五”以来,国家在973项目、863项目和科技支撑计划项目中,先后安排了一批生物能源相关的基础研究、技术开发和工程示范项目,取得了良好进展。

截止到2009年底,我国燃料乙醇产量已达到172万吨,生物柴油约30万吨,生物燃气约120亿立方米。

本项目针对燃料乙醇、生物柴油和生物燃气三大主要生物能源产品及以丁醇为代表的长链醇类第二代生物燃料生产关键技术,组织有良好基础的优势科研单位和企业协作攻关。

预计项目完成后,现有燃料乙醇生产发酵能耗降低40%,水耗降低20%;建立万吨级规模纤维素乙醇示范工程;建立总面积10000M2的低成本能源微藻光自养培养示范基地,千吨级规模微生物油脂生物柴油中试装置,适宜于广谱油脂的万吨级规模酶法生物柴油示范工程;建设日产洁净生物燃气10000M3的示范基地;培育2-3个产学研技术创新联盟,拉动生物能源产值约300亿;培养引进8-10名领军人才,申请100个左右发明专利,发表论文约300篇,其中50%为SCI收录,培养博硕士研究生约600人。

本项目申请国家拨款1.5亿元,地方和部门配套1.0亿元,企业投入3.0亿元,总经费投入5.5亿元。

一、项目提出的依据

目前,我国已成为世界能源消费大国,其中基于煤炭和石油的两大化石类能源占能源消费总量的比例高达90%,但我国石油资源严重匮乏,2009年石油进口量已占石油消费总量的50%以上。

党中央、国务院高度重视包括生物能源在内的各类可再生能源的开发利用。

2005年11月国际可再生能源大会在北京召开,胡锦涛总书记在发来的贺词中指出:

“加强可再生能源开发利用,是应对日益严重的能源和环境问题的必由之路,也是人类社会实现可持续发展的必由之路。

”在2010年4月22日召开的国家能源委员会第一次会议上,国务院总理温家宝强调:

“要加快能源调整优化结构,大力培育新能源产业,下大力气落实2020年非化石能源消费比重提高到15%的目标;要提高能源科技的创新能力,支撑现代能源体系建设。

《国家中长期科学和技术发展规划纲要(2006-2020年)》明确将“可再生能源的低成本规模化开发利用”列为优先主题,并突出发展生物能源。

《国家可再生能源中长期发展规划》中也明确提出:

“从长远考虑,要积极发展以纤维素类生物质为原料的生物燃料技术;到2020年,生物燃料乙醇年利用量达到1000万吨,生物柴油年利用量达到200万吨,沼气年利用量达到440亿立方米。

”要实现这一目标,迫切需要发展符合我国国情的生物能源产品生产原料,特别是以农作物秸秆为代表的木质纤维素类生物质资源和各类有机废弃物,开发生物能源产品生产创新技术,显著降低成本,提高生物能源产品与不可再生化石类能源产品的竞争能力。

二、项目立项的意义、必要性和紧迫性

发展生物能源对于推动能源战略新兴产业发展,保障国家能源安全,改善生态环境,促进农村经济发展,都具有重要的战略意义。

(一)生物能源是引领能源战略新兴产业,应对国际竞争的迫切需要

生物能源一直是欧美等发达国家能源战略的重要组成部分,美国政府能源部(DepartmentofEnergy,DOE)早在上世纪七十年代石油危机事件之后就建立了可再生能源国家实验室(NationalRenewableEnergyLaboratory,NREL),对以农林废弃物为代表的木质纤维素类生物质资源生产以燃料乙醇为代表的液体燃料技术开发给予重点支持。

2000年10月,为了加快推进美国先进生物燃料技术开发和产业化,NREL组建了国家生物能源中心(NationalBioenergyCenter,NBC),为DOE的生物质开发计划(DOEBiomassProgram)及预期目标的实现提供技术支持。

金融危机爆发以来,新能源发展被提升到了前所未有的高度,新能源产业正孕育着新的经济增长点,同时也将成为新一轮国际竞争的战略制高点,美国总统奥巴马积极呼吁加快美国生物燃料的开发,以构建美国清洁能源产业基础,以期在新能源和环境问题上引领世界,政府研发投入不断增加,如2009年5月6日能源部长朱棣文宣布从“美国促进经济恢复行动(TheAmericanRecoveryandReinvestmentAct)”资金中安排7.865亿美元支持先进生物燃料技术开发和生物炼制产业化示范(AdvancingBiofuelsR&DandCommercial-scaleBiorefineryDemonstrationProjects)。

欧盟国家对进口石油的依赖也越来越重,2007年27个欧盟国家进口石油总量已经超过6亿吨,对外依存度接近80%。

为了应对这一挑战,2006年欧盟建立了生物燃料技术开发平台(EuropeanBiofuelsTechnologyPlatform,EBTP),随后制定了其生物燃料发展远景规划(BiofuelsintheEU:

Avisionfor2030andbeyond)。

2009年10月欧盟委员会发布“低碳技术发展投资计划(InvestingintheDevelopmentofLowCarbonTechnologies,theSET-Plan)”,拟在未来10年内投入约90亿欧元,支持生物能源技术开发,并针对欧盟区不同国家的地理环境、气候条件和基础设施状况,建立30个左右的生物能源中试、产业化示范及商业化规模生产装置。

(二)生物能源是保障国家能源安全,推动可持续发展的迫切需要

表1所示为20002009年10年内我国石油消费结构。

可见随着经济的持续高速发展,石油消费总量不断增加,而国内石油生产只能维持在1.8亿吨左右,供需矛盾特别突出,从2008年开始,我国进口石油的比例已经超过50%。

表1:

20002009年我国石油消费与进口情况统计(单位:

亿吨)

年份

石油消费

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

总量

2.22

2.17

2.31

2.52

2.91

2.99

3.22

3.46

3.69

4.08

国内产量

1.63

1.64

1.69

1.69

1.74

1.80

1.84

1.87

1.80

1.89

进口量

0.59

0.53

0.62

0.83

1.17

1.19

1.38

1.59

1.89

2.19

进口比例(%)

26.6

24.4

26.8

32.9

40.2

39.8

42.8

46.0

51.3

53.6

发展生物能源,逐步减轻对进口石油的依赖程度,已经成为国家能源安全及经济可持续发展的重大需求!

(三)发展生物能源是保护生态环境,建设低碳经济的迫切需要

据2009年国际能源署(InternationalEnergyAgency,IEA)发布的《燃料燃烧二氧化碳排放2009》(CO2EmissionsfromFuelCombustion,2009Edition),2007年中国CO2总排放量为60亿吨,主要来自能源生产与消费,占全球排放的21%,超过美国成为世界上CO2排放第一大国。

2009年11月25日国务院召开常务工作会议,研究部署应对气候变化工作,决定到2020年我国控制温室气体排放的行动目标:

单位国内生产总值二氧化碳排放比2005年下降4045%。

由于全球温室气体总量的60%以上来自能源生产和消费领域,而生物能源产品具有碳排放中性的特点,其生产和消费中产生的CO2释放到大气环境中后,可以被植物光合作用吸收,不会导致大气环境CO2的净增加,是实现温室气体减排目标的根本出路!

(四)发展生物能源是调整农业产业结构,促进农民增收的迫切需要

生物能源生产原料主要来自农业,发展生物能源,可以转变传统种植业“粮经饲”三元结构为“粮经饲能”四元结构,为农村开辟新兴产业,有效延长农业产业链,提高农产品附加值,增加农村就业机会,增加农民收入。

以纤维素乙醇为例,7吨秸秆就可以生产1吨乙醇,按年产500万吨纤维素乙醇计算,则需要秸秆约3500万吨,平均每吨秸秆的价格在300左右,仅此一项就可为农民增收100亿元以上。

三、项目相关领域的研发基础和相关发展趋势

生物能源包括生物燃料、生物燃气和生物氢能,生物燃料主要指燃料乙醇和生物柴油,由于以丁醇为代表的长链醇作为发动机燃料的性能优于燃料乙醇,被认为是具有发展前景的第二代生物燃料。

目前国内外燃料乙醇主要以糖质和淀粉质原料生产,即第一代燃料乙醇,其大规模发展一方面会影响粮食安全,另一方面扩大原料种植面积会破坏生态多样性。

利用以秸秆为代表的木质纤维素类生物质生产的纤维素乙醇,被称为第二代燃料乙醇,但木质纤维素类生物质加工转化难的问题十分突出。

基于能够在不适宜于粮食作物生长的边际土地上种植,生物量产量高且易于加工转化的原料如甜高粱茎秆和菊芋块茎等生产的燃料乙醇,被称为1.5代燃料乙醇。

(一)研发基础

1、淀粉质原料燃料乙醇技术

我国“十五”期间试点建设大型燃料乙醇装置,目前已经形成了总量172万吨的燃料乙醇生产能力,不仅积累了发展燃料乙醇这一最主要生物能源产品的经验,而且乙醇发酵关键技术和大型装置建设的工程化技术都取得了重大突破。

淀粉质原料高浓度乙醇发酵技术取得突破:

在我国发展燃料乙醇之前,乙醇发酵行业发酵终点乙醇体积比浓度一般在810%,不仅发酵醪精馏能耗高,而且吨乙醇生产排放的废糟液高达1215吨,废糟液处理设备投资大,运行能耗高的问题更突出。

在国家“十五”重点科技攻关项目“生物能源生产关键技术”和工业界的共同支持下,大连理工大学、江南大学和广西科学院等单位开展了高浓度乙醇发酵的研究工作,取得了突破性进展,目前我国乙醇发酵技术发酵终点乙醇体积比浓度已经达到15%以上,工业生产装置连续发酵乙醇体积比浓度已经提高到1213%,燃料乙醇生产的能耗显著降低。

高温乙醇发酵技术进一步降低燃料乙醇能耗:

酵母乙醇发酵一般在3032C下进行,而循环冷却水在夏季高温季节无法达到冷却发酵装置需要的温度,燃料乙醇装置只能采用投资大且运行能耗高的制冷系统制备低温水来保持正常运行,高温发酵是解决这一问题的唯一选择,目前国内几套大型燃料乙醇装置的发酵温度已经提高到34以上。

2、纤维素乙醇技术

与欧美等发达国家相比,我国这一领域的基础研究和应用技术开发工作起步较晚。

2004年国家973计划立项支持了“秸秆资源高值化关键过程的基础研究”,由中科院过程工程研究所联合山东大学、中科院微生物所和清华大学等单位承担,围绕秸秆组分分离机制及其反应性、纤维素氢键网络破裂和短纤维形成机制及秸秆分级转化过程工程基础理论等关键科学问题开展研究,取得的进展为秸秆类生物质预处理和综合利用技术的开发奠定了良好基础。

2008年中科院知识创新工程重大项目“纤维素乙醇高温发酵和生物炼制”启动,经过二年多的努力,在原料预处理、纤维素酶生产菌株筛选及液体深层发酵、混合糖发酵菌株构建、技术集成与系统优化等方面都取得了较好研究进展。

与此同时,浙江大学等单位在国家863项目支持下,真菌纤维素酶技术开发取得突破性进展,在50吨规模发酵罐中,标准滤纸酶活达到80IU/ml以上,其技术指标与国外两大酶制剂公司诺维信(Novozymes)和杰能科(Genencor)的水平接近。

3、1.5代燃料乙醇技术

我国有大量不适宜于粮食作物生长的盐碱地和荒漠地,种植抗逆性强,生物量产量高,易于加工转化的作物如菊芋和甜高粱等,可以促使燃料乙醇产业向原料多元化方向发展。

“十一五”期间,大连理工大学和复旦大学等单位开展了以菊芋块茎为原料生产燃料乙醇的研究,选育了具有菊粉酶生产能力且乙醇发酵性能良好的克鲁维酵母,开发了集产酶、糖化及乙醇发酵为一体的创新技术,目前利用大庆周边大量盐碱地的菊芋规模化种植及加工园区已经建立,为菊芋块茎生产燃料乙醇,创造了良好条件。

甜高粱被公认为是光和效率高的能源作物,在国家“十一五”科技支撑项目的支持下,清华大学等单位开发了基于先进固体发酵技术的甜高粱茎秆一步法生物加工生产乙醇创新技术,解决了其工程放大问题,建立了127M3规模的高效固体发酵反应器。

4、生物柴油技术开发及产业化

针对我国生物柴油产业发展面临油脂资源匮乏的实际情况,北京化工大学和中科院大连化学物理研究所等单位开展了利用微生物油脂的研究工作,筛选获得了富油微生物菌株,可利用淀粉和味精等行业废水、秸秆水解液、菊芋汁等廉价广谱原料发酵生产微生物油脂,2008年10月通过了由中国石油化工协会组织的成果鉴定,鉴定意见为:

“以含糖废水生产油脂的中试装置,总体技术达到国际先进水平”。

微藻光自养合成油脂可望成为生物柴油生产新的油脂来源,已经成为能源生物技术开发的前沿。

华东理工大学等单位近年来先后开展了这一领域的研究工作,取得了良好进展。

筛选获得了优质藻种,油脂含量可以达到干重的60%,开发了适宜于微藻高密度培养的光反应器,解决了反应器的工程放大问题,在微藻的低能耗采收,油脂高效分离,藻渣深加工等方面也开展了卓有成效的研究工作。

在酶法生物柴油制备技术方面,北京化工大学、清华大学和四川大学等单位开展了大量的研究工作,开发了适合脂肪酸酯生产的专一假丝酵母脂肪酶,该酶是一种新脂肪酶,目前已在基因库中登记(ABG81956),并获国家发明专利(专利号:

ZL200510112638.5),完成了生物柴油用脂肪酶的生产,该脂肪酶是目前国内外用于酯化合成性价比最好的脂肪酶,开发了新型酶膜反应器及酶的固定化方法,成功地用于生物柴油的酶法合成,该成果2005年获得中国石油化工协会技术发明一等奖,2008年获得国家技术发明二等奖。

针对传统生物酶法工艺的瓶颈问题,清华大学提出了利用新型有机介质体系进行酶促油脂原料和甲醇进行生物柴油制备新工艺,从根本上解除了传统工艺中反应物甲醇及副产物甘油对酶反应活性及稳定性的负面影响,使酶的使用寿命延长了数十倍。

该项目于2005年通过了教育部科技成果鉴定,经中石化石油化工科学研究院检测,制备的生物柴油,其品质达到了欧盟生物柴油和美国生物柴油标准。

生物柴油生产过程副产10%左右的甘油,将其高值化利用生产高附加值产品不仅可以降低生物柴油的生产成本,而且能够减少废水处理的费用。

清华大学和大连理工大学等单位将甘油生物转化为聚酯原料1,3-丙二醇,开发了具有自主知识产权的生物柴油与1,3-丙二醇联产技术及1,3-丙二醇发酵与分离耦合节能减排技术。

5、生物燃气(沼气)

生物燃气也称沼气,截至到2008年底,我国年产沼气已达120亿M3,一批科研院所和大专院校如中科院成都生物研究所、农业部沼气科学研究所和中国农业大学等都长期从事这一领域研究工作,在产甲烷菌群分离与鉴定、发酵工艺及产气调控、发酵过程种群动态变化监测、干发酵技术、大中型沼气工程等方面都取得了良好进展。

在洁净生物燃气技术开发方面,中科院成都生物所与德国BEB公司合作,共同完成联合国工业发展组织示范项目“坦桑尼亚剑麻废液产沼气发电工程”和“古巴哈瓦那市20-30万户家庭有机垃圾沼气发电工程”,这两个工程均为高浓度全混式连续发酵工艺,综合了生物脱硫和多级生物调控等多项先进技术。

中科院过程工程研究所在气体脱硫净化方面积累了丰富经验,开发了膜吸收脱硫关键技术,在天然气脱硫中的应用,可以将总硫和硫化氢分别脱除到0.1ppm以下,同时通过对脱硫机理的分析,针对精脱硫剂的寿命问题,开发了有效的再生手段,使脱硫剂的寿命显著延长。

“十一五”期间,“新型高效规模化沼气工程”作为国家科技支撑计划重大项目获得支持,研究开发了“产甲烷菌剂”和“产沼气促进剂”等相关功能剂,提高了沼气装置的产气率,缩短了启动时间。

6、长链醇生物燃料

近年来,针对丁醇作为生物燃料对成本降低的特殊要求,中科院微生物所和上海植物生理研究所等单位,在国家973项目和中科院知识创新工程项目的支持下,开展了丙丁梭菌的遗传改造工作,获得了能够耐受约20g/L丁醇浓度且溶剂合成能力提高的突变株,通过基因组重测、比较基因组学和比较蛋白质组分析,解析了与溶剂耐受、丁醇生物合成相关的重要分子基础和胁迫耐受性机制,构建了数株性能优化的基因工程菌,其中丙酮途径缺失的突变株,发酵总溶剂中丁醇比例提高15-20%,对葡萄糖的收率达到40%。

与此同时,中科院大连化学物理研究所和大连理工大学等单位利用木质纤维素类生物质水解液和菊芋汁水解液生产丁醇的研究也取得了良好进展。

在异丁醇和异戊醇生物制造方面,中科院天津工业生物技术研究所在大肠杆菌中成功克隆表达了异戊醇和异丁醇合成途径关键酶:

2-酮基酸脱羧酶和醇脱氢酶基因,通过敲除大肠杆菌中其他丙酮酸竞争途径,提高了异戊醇和异丁醇的合成产率;利用适应进化技术筛选出异戊醇耐受性显著提高的突变菌株,其异戊醇耐受性从3g/L提高到6g/L;双向蛋白质电泳分析发现在高异戊醇耐受性菌株中有超过20个蛋白发生了上调或下调的表达变化;在大肠杆菌中成功组装出异丁醇和异戊醇的整条合成途径,构建出初级异丁醇和异戊醇细胞工厂。

2,3-丁二醇是另一种潜在燃料,大连理工大学以秸秆水解液和菊芋水解糖为底物,发酵法生产2,3-丁二醇,发酵终点产物浓度可以达到80g/L以上,为2,3-丁二醇生物燃料发展奠定了良好基础。

(二)发展趋势

1、纤维素乙醇研发投入增加,技术开发和产业化进程加快

随着淀粉质原料燃料乙醇的快速发展,玉米等粮食类原料大量消耗拉动其价格快速上涨,不仅直接影响燃料乙醇生产成本和原料的供给,而且潜在影响人类粮食安全,发展“非粮”燃料乙醇已成为世界各国的共同选择。

以秸秆为代表的木质纤维素类生物质资源丰富,价格低廉,是大规模发展燃料乙醇的理想选择,因此纤维素乙醇成为当前研发的重点,研发投入不断增加。

以美国为例,2007年2月DOE安排3.85亿美元支持6个以秸秆为原料采用不同技术路线的纤维素乙醇示范装置,2009年5月和12月DOE又分别安排7.86亿美元和5.64亿美元,支持生物能源和生物基化学品技术开发、中试和示范工程装置建设,其中大部分经费继续支持纤维素乙醇,其发展目标是到2012年进入商业化生产,纤维素乙醇在成本上能够与成品油竞争。

当前纤维素乙醇技术发展的瓶颈仍然集中在纤维素酶和混合糖发酵菌株构建,前者决定原料预处理技术路线、设备投资和能耗,后者决定纤维素乙醇生产的原料消耗和综合能耗。

世界上几大酶制剂公司包括丹麦的诺维信(Novozyme)、美国的杰能科(Genencor)、荷兰的帝斯曼(DSM)及研发机构如美国政府能源部可再生能源国家实验室(NationalRenewableEnergyLaboratory,NREL)等均在纤维素酶技术开发方面投入巨大,目标是依托现代生物技术进展提供的先进方法和手段提高纤维素酶的效率和发酵水平,将纤维素乙醇生产中纤维素酶的成本从目前的每加仑约30美分降低到10美分以下。

在混合糖发酵菌株构建方面,NREL和普度大学等研究机构分别构建了基于乙醇发酵运动单孢菌(Zymononasmobilis)和酿酒酵母(Saccharomycescerevisiae)的工程菌株,实现混合糖发酵生产乙醇,而英国的TMORenerewablesLtd公司则开发了高温细菌(6070C)连续发酵生产纤维素乙醇技术,并于2008年建立了一个适宜于多种原料特点的小型示范装置(ProcessDemonstrationUnit,PDU)。

2、能源微藻已经成为生物能源技术发展的前沿

微藻是在海洋、湖泊等水体中分布广泛的单细胞植物,整个藻体都能光合作用,其光合效率可以高达10%,产油能力是油料作物如大豆、向日葵、油菜籽和棕榈树等的10倍以上,而且微藻培养不占用耕地,以CO2为碳源光自养生长(EWaltz.Biotech’sgreengold!

Nat.Biotechnol.2009,27:

15-18)。

因此,光自养微藻被认为是最有可能替代油料作物,为生物柴油产业发展提供大宗原料的选择。

目前,世界范围内正在广泛开展微藻低成本培养及微藻油脂生产生物柴油技术的研究,在美国政府能源部2009年支持生物能源专项经费中,微藻生物燃料得到大力支持。

3、长链醇类可望成为第二代生物燃料

以丁醇为代表的长链醇作为燃料的性能优于乙醇,被认为是第二代生物燃料,但其对细胞的强毒性使发酵水平比乙醇低约10倍,因此目前丁醇的生产成本显著高于乙醇。

国内外丁醇发酵的菌株均为梭菌(Clostridiumsp.),发酵过程副产丙酮和乙醇,总溶剂量一般在23%,其中丁醇占6070%。

目前丁醇技术开发体现在两个方面:

一是对现有菌株从不同层面,特别是基于基因组序列测定和解析提供的信息,对其进行改造,设法提高对丁醇的耐受性和发酵过程丁醇生成的比例;另一方面是基于酵母对醇类物质抑制具有良好的耐受性,如可以耐受20%以上的乙醇,对丁醇的耐受性也能够达到10%的特点,对酵母进行改造,将梭菌中的丁醇代谢途径转入酵母体系,如美国加州大学伯克利分校JayKeasling教授正与英国石油公司BP合作开展这一研究工作,合成生物学的概念和方法也因此而产生。

2009年BP又与美国杜邦(DuPont)合作建立了一个新的公司ButamaxAdvancedBiofuels,专门致力于丁醇技术开发。

4、生物燃气正向车用燃料和洁净工业能源方向发展

规模化沼气工程和相关技术近年来在国外迅速发展。

据2006年统计,德国3800座农业沼气工程的发电装机总量为660MW,到2010年德国的生物燃气将占总能源消耗的4%以上。

瑞典把沼气(Biogas)净化后得到甲烷,再压缩至200kg/cm2作为汽车和火车燃料,在南部的Linkoping市76%的公交车和70%的出租车使用沼气,全国使用沼气的轿车已超过5000辆,建设加气站70多个。

我国农村沼气技术占据国际领先地位,2008年户用沼气已经达到了120亿M3,规划到2020年我国工业沼气将发展到140亿M3,沼气将从边远农村进入城镇,沼气的应用也从过去户用燃料向车用燃气和工业燃料和原料发展。

高效微生物菌种、微生物代谢调控技术、先进工艺装备等成为当前沼气规模化生产稳定高效运行技术的发展趋势。

四、项目领域的战略分析、发展思路、本项目的总体目标及考核指标

可再生能源是经济和社会可持续发展的必然选择,生物能源是可再生能源的重要组成部分,其中以燃料乙醇和生物柴油为代表的生物燃料,尽管其目前在能源消费构成中所占的比例还不大,但已被公认是替代石油基液体燃料如汽油、柴油和航油的唯一选择。

生物能源生产原料必须是资源丰富,廉价易得,不影响生态多样性的农林废弃物,如以各类作物秸秆和畜禽粪便等为代表的木质纤维素类生物质资源,只有这样生物能源产业的大规模发展才不会引发诸如“与人类争粮油,与粮油争土地”的社会问题。

然而,木质纤维素类生物质资源在自然进化过程中形成的对降解的强抗性,使生物能源产品的生产成本还很高,难以与石油基产品相竞争,但是现代生物技术的发展,特别是各种组学技术,已经为解析这一问题的机理,开发相应的策略,提供了先进的方法和手段。

本项目的发展思路是依托现代生物技术进展提供的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2