二次微分方程地通解.docx

上传人:b****1 文档编号:14894179 上传时间:2023-06-28 格式:DOCX 页数:12 大小:92.92KB
下载 相关 举报
二次微分方程地通解.docx_第1页
第1页 / 共12页
二次微分方程地通解.docx_第2页
第2页 / 共12页
二次微分方程地通解.docx_第3页
第3页 / 共12页
二次微分方程地通解.docx_第4页
第4页 / 共12页
二次微分方程地通解.docx_第5页
第5页 / 共12页
二次微分方程地通解.docx_第6页
第6页 / 共12页
二次微分方程地通解.docx_第7页
第7页 / 共12页
二次微分方程地通解.docx_第8页
第8页 / 共12页
二次微分方程地通解.docx_第9页
第9页 / 共12页
二次微分方程地通解.docx_第10页
第10页 / 共12页
二次微分方程地通解.docx_第11页
第11页 / 共12页
二次微分方程地通解.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

二次微分方程地通解.docx

《二次微分方程地通解.docx》由会员分享,可在线阅读,更多相关《二次微分方程地通解.docx(12页珍藏版)》请在冰点文库上搜索。

二次微分方程地通解.docx

二次微分方程地通解

第六节二阶常系数齐次线性微分方程

教学目的:

使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法

教学重点:

二阶常系数齐次线性微分方程的解法

教学过程:

一、二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程方程

ypyqy0

称为二阶常系数齐次线性微分方程其中p、q均为常数

如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解那么yC1y1C2y2就是它的通解

我们看看能否适当选取r使yerx满足二阶常系数齐次线性微分方程为此将yerx代入方程

ypyqy0

(r2prq)erx0

由此可见只要r满足代数方程r2prq0函数yerx就是微分方程的解

特征方程方程r2prq0叫做微分方程ypyqy0的特征方程特征方程的两个根r1、r2可用公式

求出

特征方程的根与通解的关系

(1)特征方程有两个不相等的实根r1、r2时函数

是方程的两个线性无关的解

这是因为

函数

是方程的解又

不是常数

因此方程的通解为

(2)特征方程有两个相等的实根r1r2时函数

是二阶常系数齐次线性微分方程的两个线性无关的解

这是因为

是方程的解又

所以

也是方程的解且

不是常数

因此方程的通解为

(3)特征方程有一对共轭复根r1,2i时函数ye(i)x、ye(i)x是微分方程的两个线性无关的复数形式的解函数yexcosx、yexsinx是微分方程的两个线性无关的实数形式的解

函数y1e(i)x和y2e(i)x都是方程的解而由欧拉公式得

y1e(i)xex(cosxisinx)

y2e(i)xex(cosxisinx)

y1y22excosx

y1y22iexsinx

故excosx、y2exsinx也是方程解

可以验证y1excosx、y2exsinx是方程的线性无关解

因此方程的通解为

yex(C1cosxC2sinx)

求二阶常系数齐次线性微分方程ypyqy0的通解的步骤为

第一步写出微分方程的特征方程

r2prq0

第二步求出特征方程的两个根r1、r2

第三步根据特征方程的两个根的不同情况写出微分方程的通解

例1求微分方程y2y3y0的通解

解所给微分方程的特征方程为

r22r30即(r1)(r3)0

其根r11r23是两个不相等的实根因此所求通解为

yC1exC2e3x

例2求方程y2yy0满足初始条件y|x04、y|x02的特解

解所给方程的特征方程为

r22r10即(r1)20

其根r1r21是两个相等的实根因此所给微分方程的通解为

y(C1C2x)ex

将条件y|x04代入通解得C14从而

y(4C2x)ex

将上式对x求导得

y(C24C2x)ex

再把条件y|x02代入上式得C22于是所求特解为

x(42x)ex

例3求微分方程y2y5y0的通解

解所给方程的特征方程为

r22r50

特征方程的根为r112ir212i是一对共轭复根

因此所求通解为

yex(C1cos2xC2sin2x)

n阶常系数齐次线性微分方程方程

y(n)p1y(n1)p2y(n2)pn1ypny0

称为n阶常系数齐次线性微分方程其中p1p2pn1pn都是常数

二阶常系数齐次线性微分方程所用的方法以及方程的通解形式可推广到n阶常系数齐次线性微分方程上去

引入微分算子D及微分算子的n次多项式

L(D)=Dnp1Dn1p2Dn2pn1Dpn

则n阶常系数齐次线性微分方程可记作

(Dnp1Dn1p2Dn2pn1Dpn)y0或L(D)y0

注D叫做微分算子D0yyDyyD2yyD3yyDnyy(n)

分析令yerx则

L(D)yL(D)erx(rnp1rn1p2rn2pn1rpn)erxL(r)erx

因此如果r是多项式L(r)的根则yerx是微分方程L(D)y0的解

n阶常系数齐次线性微分方程的特征方程

L(r)rnp1rn1p2rn2pn1rpn0

称为微分方程L(D)y0的特征方程

特征方程的根与通解中项的对应

单实根r对应于一项Cerx

一对单复根r12i对应于两项ex(C1cosxC2sinx)

k重实根r对应于k项erx(C1C2xCkxk1)

一对k重复根r12i对应于2k项

ex[(C1C2xCkxk1)cosx(D1D2xDkxk1)sinx]

例4求方程y(4)2y5y0的通解

解这里的特征方程为

r42r35r20即r2(r22r5)0

它的根是r1r20和r3412i

因此所给微分方程的通解为

yC1C2xex(C3cos2xC4sin2x)

例5求方程y(4)4y0的通解其中0

解这里的特征方程为

r440

它的根为

因此所给微分方程的通解为

二、二阶常系数非齐次线性微分方程简介

二阶常系数非齐次线性微分方程方程

ypyqyf(x)

称为二阶常系数非齐次线性微分方程其中p、q是常数

二阶常系数非齐次线性微分方程的通解是对应的齐次方程

的通解yY(x)与非齐次方程本身的一个特解yy*(x)之和

yY(x)y*(x)

当f(x)为两种特殊形式时方程的特解的求法

一、f(x)Pm(x)ex型

当f(x)Pm(x)ex时可以猜想方程的特解也应具有这种形式因此设特解形式为y*Q(x)ex将其代入方程得等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

(1)如果不是特征方程r2prq0的根则2pq0要使上式成立Q(x)应设为m次多项式

Qm(x)b0xmb1xm1bm1xbm

通过比较等式两边同次项系数可确定b0b1bm并得所求特解

y*Qm(x)ex

(2)如果是特征方程r2prq0的单根则2pq0但2p0要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立Q(x)应设为m1次多项式

Q(x)xQm(x)

Qm(x)b0xmb1xm1bm1xbm

通过比较等式两边同次项系数可确定b0b1bm并得所求特解

y*xQm(x)ex

(3)如果是特征方程r2prq0的二重根则2pq02p0要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立Q(x)应设为m2次多项式

Q(x)x2Qm(x)

Qm(x)b0xmb1xm1bm1xbm

通过比较等式两边同次项系数可确定b0b1bm并得所求特解

y*x2Qm(x)ex

综上所述我们有如下结论如果f(x)Pm(x)ex则二阶常系数非齐次线性微分方程ypyqyf(x)有形如

y*xkQm(x)ex

的特解其中Qm(x)是与Pm(x)同次的多项式而k按不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2

例1求微分方程y2y3y3x1的一个特解

解这是二阶常系数非齐次线性微分方程且函数f(x)是Pm(x)ex型(其中Pm(x)3x10)

与所给方程对应的齐次方程为

y2y3y0

它的特征方程为

r22r30

由于这里0不是特征方程的根所以应设特解为

y*b0xb1

把它代入所给方程得

3b0x2b03b13x1

比较两端x同次幂的系数得

3b032b03b11

由此求得b01

于是求得所给方程的一个特解为

例2求微分方程y5y6yxe2x的通解

解所给方程是二阶常系数非齐次线性微分方程且f(x)是Pm(x)ex型(其中Pm(x)x2)

与所给方程对应的齐次方程为

y5y6y0

它的特征方程为

r25r60

特征方程有两个实根r12r23于是所给方程对应的齐次方程的通解为

YC1e2xC2e3x

由于2是特征方程的单根所以应设方程的特解为

y*x(b0xb1)e2x

把它代入所给方程得

2b0x2b0b1x

比较两端x同次幂的系数得

2b012b0b10

由此求得

b11于是求得所给方程的一个特解为

从而所给方程的通解为

提示

y*x(b0xb1)e2x(b0x2b1x)e2x

[(b0x2b1x)e2x][(2b0xb1)(b0x2b1x)2]e2x

[(b0x2b1x)e2x][2b02(2b0xb1)2(b0x2b1x)22]e2x

y*5y*6y*[(b0x2b1x)e2x]5[(b0x2b1x)e2x]6[(b0x2b1x)e2x]

[2b02(2b0xb1)2(b0x2b1x)22]e2x5[(2b0xb1)(b0x2b1x)2]e2x6(b0x2b1x)e2x

[2b04(2b0xb1)5(2b0xb1)]e2x[2b0x2b0b1]e2x

方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解形式

应用欧拉公式可得

ex[Pl(x)cosxPn(x)sinx]

其中

而mmax{ln}

设方程ypyqyP(x)e(i)x的特解为y1*xkQm(x)e(i)x

必是方程

的特解

其中k按i不是特征方程的根或是特征方程的根依次取0或1

于是方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解为

xkex[R

(1)m(x)cosxR

(2)m(x)sinx]

综上所述我们有如下结论

如果f(x)ex[Pl(x)cosxPn(x)sinx]则二阶常系数非齐次线性微分方程

ypyqyf(x)

的特解可设为

y*xkex[R

(1)m(x)cosxR

(2)m(x)sinx]

其中R

(1)m(x)、R

(2)m(x)是m次多项式mmax{ln}而k按i(或i)不是特征方程的根或是特征方程的单根依次取0或1

例3求微分方程yyxcos2x的一个特解

解所给方程是二阶常系数非齐次线性微分方程

且f(x)属于ex[Pl(x)cosxPn(x)sinx]型(其中02Pl(x)xPn(x)0)

与所给方程对应的齐次方程为

yy0

它的特征方程为

r210

由于这里i2i不是特征方程的根所以应设特解为

y*(axb)cos2x(cxd)sin2x

把它代入所给方程得

(3ax3b4c)cos2x(3cx3d4a)sin2xxcos2x

比较两端同类项的系数得

b0c0

于是求得一个特解为

提示

y*(axb)cos2x(cxd)sin2x

y*acos2x2(axb)sin2xcsin2x2(cxd)cos2x

(2cxa2d)cos2x(2ax2bc)sin2x

y*2ccos2x2(2cxa2d)sin2x2asin2x2(2ax2bc)cos2x

(4ax4b4c)cos2x(4cx4a4d)sin2x

y*y*(3ax3b4c)cos2x(3cx4a3d)sin2x

b0c0

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2