二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx

上传人:b****2 文档编号:1501694 上传时间:2023-04-30 格式:DOCX 页数:20 大小:34.10KB
下载 相关 举报
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第1页
第1页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第2页
第2页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第3页
第3页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第4页
第4页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第5页
第5页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第6页
第6页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第7页
第7页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第8页
第8页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第9页
第9页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第10页
第10页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第11页
第11页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第12页
第12页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第13页
第13页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第14页
第14页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第15页
第15页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第16页
第16页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第17页
第17页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第18页
第18页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第19页
第19页 / 共20页
二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx

《二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx》由会员分享,可在线阅读,更多相关《二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx(20页珍藏版)》请在冰点文库上搜索。

二甲醚用作城镇燃气时LPG灶具改造的应用研究文档格式.docx

10-6。

它具有与液化石油气(LPG)相似的特性。

二甲醚具有一般醚类的性质,二甲醚对金属无腐蚀性,不刺激人体皮肤,不致癌,对大气臭氧层无破坏作用,在对流层中易于降解,长期暴露于空气中,不会形成过氧化物。

所以,二甲醚是一种优良的绿色化工产品。

二甲醚与其它燃料特性比较见表1。

表二是二甲醚与其它燃料特性比较。

从表中数据可知,在同等温度条件下,二甲醚的饱和蒸气压低于液化石油气,其存储、运输、使用等均比液化石油气安全。

二甲醚在空气中的爆炸下限比液化石油气高一倍,因此,在使用过程中,二甲醚作为燃料比液化石油气安全。

虽然二甲醚的热值比液化石油气低,但由于二甲醚自身含氧,在燃烧过程中所需空气量远低于液化石油气,从而使得二甲醚的预混气热值和理论燃烧温度都高于液化石油气。

二甲醚具有优良的混溶性,可以同大多数极性和非极性的有机溶剂混溶,例如汽油、四氯化碳、丙酮、氯苯和乙酸乙酯。

较易溶于丁醇,对多醇类的溶解度不佳。

常压下在100mL水中可溶解3700mL二甲醚,但是加入少量的助剂后就可与水以任意比例互溶。

DME燃烧时火焰略带亮光。

常温下DME难于活化,但长期储存或受日光直接照射,可形成不稳定过氧化物,这种过氧化物能自燃或自发的爆炸或受热后爆炸。

二甲醚毒性很低,气体有刺激及麻醉作用的特性,通过吸入或皮肤吸收过量的二甲醚,会引起麻醉、失去知觉和呼吸器官损伤。

小鼠吸人225.72g/m3有麻醉作用;

猫吸入1658.85g/m3会深度麻醉;

人吸入154.24g/m3有轻度麻醉,吸入940.50g/m3有极不愉快的感觉,有窒息感。

因此,人身接触二甲醚要有防护,带隔绝式呼吸器,佩戴防护手套。

日本规定二甲醚在空气中的允许浓度为300cm3/m3(大气环境标准)。

表1二甲醚的理化性质

项目

性质

化学式

CH3OCH3

正常沸点/0C

-24.9

闪点/0C

-41

自燃温度/0C

235

临界温度/0C

127

熔点/0C

-141.5

饱和蒸气压(200C)/Mpa

0.51

临界压力/Mpa

5.37

临界密度/kg/L

0.2174

热值/kj/kg

28410

气化潜热(-200C)/KJ/kg

460

空气中爆炸极限/%

3~17

对水的相对密度

0.66

对空气的相对密度

1.62

液态密度(200C)/kg/L

0.67

表2二甲醚与天然气、液化石油气特性比较

二甲醚

天然气

液化石油气

相对分子质量

46.069

16.043

44.097

沸点(℃)

-161.5

-42.1

凝固点(℃)

-141.4

-182.5

-187.7

临界温度(℃)

126.8

-82.6

96.7

临界压力(MPa)

4.60

4.25

20℃蒸气压(MPa)

0.53

超临界状态

0.83

沸点汽化潜热(kj/kg)

466.9

509.9

425.7

液态低热值((MJ/kg)

28.44

-

47.16

液态高热值(MJ/kg)

31.09

51.26

标况气态低热值(MJ/m3)

58.50

35.89

92.83

标况气态高热值(MJ/m3)

63.16

39.85

100.90

15℃气态低热值(MJ/m3)

55.46

34.02

88.00

15℃气态高热值(MJ/m3)

59.87

37.78

95.65

相对密度

1.592

0.554

1.550

15℃华白数((MJ/m3)

47.45

50.76

76.83

火焰传播速度((m/s)

0.50

0.38

0.42

燃烧势

40.3

48.2

二甲醚燃烧势

53.0

57.4

爆炸下限(体积分数)%

3.5

5.0

2.1

爆炸上限(体积分数)%

24.5

15.0

9.5

理论空气量(m3/m3)

14.28

9.52

23.80

理论燃烧温度(℃)

2250

2043

2055

理论烟气量(m3/m3)

16.28

10.52

25.80

自燃温度(℃)

540

平均热值/kj/kg

含氧量/%

34.8

动量扩散系数(m2/s)

11.00

14.50

3.81

热量扩散系数((m2/s)

6.01

19.57

5.11

空气中质量扩散系数(m2/s)

19.60

8.80

三、DME燃烧效率分析

二甲醚用作燃料替代LPG被市场看好,被誉为“二十一世纪的新能源”。

究其主要原因,一方面在于能源价格飙升下DME的价格优势,而另一方面则是其燃烧效率高和燃烧产物排放洁净的显著特点。

1、DME燃烧效率分析

二甲醚易燃,燃烧时火焰略带光亮,气态低位热值为64.58MJ/m3,同等质量条件下,理论热值约为汽柴油的64%。

以质量计,二甲醚本身含氧量高达34.8%,理论燃烧温度可达2250℃,燃烧性能较好,热效率也较高。

1.1本身含氧,需要添加的理论空气量相应减少

DME燃烧反应:

C2H6O十3O22CO2+3H2O

乙烷燃烧过程:

C2H6+3.5O22CO2+3H2O

由上述反应方程式可知,以相同摩尔体积DME与乙烷的燃烧过程比较,乙烷所需要的氧气量较DME多0.5mol,而DME气相热值与乙烷热值(气态低位热值为64.36MJ/m3)基本相同。

亦即,假定燃烧效率相同,获得相同的燃烧热量,1.0mol的DME燃烧时,混入的氧气量较乙烷可降低0.5mol。

我们知道,空气中1.0molO2附带3.76mol的N2和其它惰性气体,因此,上述DME及乙烷完整的燃烧反应方程式应为:

C2H60+3(02+3.76N2)2C02+3H20+3x3.76N2

C2H6+3.5(02+3.76N2)2C02+3H20+3.5X3.76N2

上两式表明,在燃烧温度不太高的情形下,反应前后N2的摩尔数不变。

N2虽然进入燃烧区,但并未参加氧化反应,相反,它带走DME部分燃烧热,进而影响热效率。

因此,降低不参与反应的N2量(空气量),则减少了热损失,相当与提高了DME的热效率。

1.2燃烧状况改善,过剩空气系数降低

一般情况下,燃烧装置空气系数α控制范围为:

工业燃烧装置α=1.05~1.20;

民用α=1.30~1.80。

从提高燃烧效率方面讲,理想情况下,α=1.0时,如果能确保空气与燃气混合充分、燃烧完全,燃烧效率最高。

实际燃烧过程中,取α>

1.0的原因是为了避免不完全燃烧情况发生,而付出的代价则是需加热不参与反应剩余的O2、N2,导致热效率降低。

DME自身含氧,由于改善了燃气与空气的混合效果,且氧气与氮气之比较普通空气大,属“富氧燃烧”工况,因而改善了燃烧状况;

而另一方面,氧气与DME混合情况趋好,除混入的空气总量可以相应降低外,还可以将空气系数控制在较低位置,α适当朝1.0方向降低,即减少剩余空气量,减少不参与燃烧的O2、N2量,自然这是DME燃烧效率提高的另一个原因。

1.3民用燃具燃烧效率分析

对于民用燃具,假定α由1.50降为1.30,不参与燃烧的O2、N2量减少,1.0摩尔体积的DME燃烧时减少的O2、N2量为:

(1.50-I.30)X[O2+(0.79÷

0.21)N2]mol

经计算,与同等热值的乙烷(或其他燃气)比较,减少的这部分热损失为3.0%~5.0%左右。

1.4火焰传热能力增加

DME燃烧时,火焰温度增加,烟气温度也随之升高,增加了分解热,当遇到低温表面时,将放出大量的分解热,这就是富氧燃烧火焰具有较大传热能力的原因之一。

1.5燃烧装置内有效利用热得以提高

由于富氧燃烧火焰温度高,燃烧装置内温压增大,辐射换热量增强,提高了装置内有效利用热。

2、DME排放性能分析

DME是一种清洁燃料,燃烧过程中无残渣、无黑烟,CO、CO2及烟气排放量降低,具有富氧燃烧的火焰特性。

由于其燃烧温度提高,氧气浓度相应增加,因此,必须特别重视其氮氧化物生成量情况。

2.1民用燃具

燃烧温度不会太高,不会出现氮氧化物生成量显著增加的情况。

2.2工业燃烧装置

燃烧装置内燃烧温度相当高时,部分氮气会分解,生成氮原子,继而与氧结合成氮的氧化物NO和NO2,这两者通称为NOx,是极有害的产物。

在太阳紫外线照射下,NOx与碳氢化合物可发生反应生成具有强氧化能力的有害物质,并形成光化学烟雾。

此外,NOx生成硝酸也是酸雨的主要组分。

燃烧生成NOx的浓度,随燃烧温度、O2浓度和停留时间增加而增加,因此,DME燃烧时,氮氧化物生成量有增加的趋势,要引起注意。

综上所述,从DME的燃烧机理分析,同等热量条件下,与天然气、液化石油气等其它燃气相比较,DME燃烧效率提高5%左右,而由于其十六烷值较高,特性与柴油相近的原因,可作为理想的柴油发动机洁净燃料,排放性能优越,因此,推广应用前景十分广阔。

而需要注意的是,由于DME具有富氧燃烧特性,燃烧温度较高,必须关注其氮氧化物的排放情况。

四、城镇燃气用二甲醚的应用

近年来,随着国际油价的不断攀升以及各国对环境保护和可持续发展的要求日益强烈,寻求新型燃料已成当务之急。

二甲醚作为环保燃料,以其良好的燃烧性能和低污染物排放性能受到越来越多的关注。

二甲醚用作城镇燃气,已经进行过许多研究与试用,已显现出新能源的作用,为二甲醚的实际应用打下了一定基础。

但在设备与技术方面,用二甲醚替代现有燃气,大规模应用于民用领域还有许多工程技术问题有待解决,还需要在标准、规范、储配设施及应用技术等方面进行研究开发。

如作为民用燃气特性的进一步研究、适合其性能的储存输送参数的研究、储存输送设备及燃烧器具的研究、有关标准、工程设计规范及技术措施的编制等课题的研究函待开展。

二甲醚与液化石油气性质虽有相似之处,但是二甲醚有其特殊性,需要制订二甲醚城镇燃气应用的整体研究规划。

要开发二甲醚用作城镇燃气的专用设备,开辟二甲醚单独供应城镇燃气的市场。

灶具是燃气用于民用领域的常用设备,设计合理的灶具可以使燃气燃烧稳定,达到较高的热效率和较低的污染物排放量。

目前二甲醚的应用主要是利用现有的液化石油气系统,而在应急情况下,如何解决暂时的灶具问题,需要对现有的液化石油气灶具如何适应二甲醚进行研究。

本文将通过理论分析结合实验数据的方法,在现有液化石油气灶具结构基础上,变动较少部件,达到二甲醚稳定燃烧的目的。

1、燃气互换性与燃具适应性

燃气互换性与燃具适应性是一个事物的两个方面,前者是对燃气品质提出的要求,后者是对燃具性能所提的要求。

若几种气源有很好的互换性,则对燃具适应性的要求就可以降低;

若燃具有很好的适应性,则对燃气互换性的要求也可降低。

采用华白数初步判定燃气互换性,一般规定在两种燃气互换时华白数偏差不超过士5%一士10%。

但随着气源种类的增多和燃烧特性差别的加大,只依靠华白数判定燃气互换性还不够,还需要考虑燃烧特性,需要结合实验进行研究。

在液化石油气灶具上改烧二甲醚,首先需要考虑两种燃气的互换性。

液化石油气选取20Y基准气(基准气组分:

75%C3H8+25%C4H10),其与二甲醚的燃烧特性参数的比较见表1

表120Y基准气与二甲醚燃烧特性参数

燃气类别

高热值/

(MJ·

m-3)

低热值/

高华白数/

低华白数/

20Y基准气

103.29

95.12

79.64

73.34

46

1.682

55.26

43.80

63

从表1中数据可知,二甲醚较之20Y基准气,高热值华白数偏差为-40%,超出了华白数的允许偏差范围(±

15%~±

10%),两种燃气不能互换,灶具要经改造和调整后才能到达正常的燃烧工况。

燃具适应性是指燃具对于燃气性质变化的适应能力。

现行国家标准《城镇燃气分类和基本特性》(GB/T13611-2006)中,对各类燃气的基准气及界限气的规定不同,而国内的燃具多是以此标准中的技术指标为依据进行设计,因此各类燃具对气源变化的适应性也不同。

2、灶具改造探讨

通过上述分析可以看出液化石油气和二甲醚液化气的性质有很大不同。

液化石油气属第20Y族气,二甲醚液化气介于6T和10T族气之间。

两种气不能换,灶具要经改造和调整后才能达到正常的燃烧工况,对灶具改造进行如下分析。

(1)引射器

引射器的主要尺寸是喉管尺寸。

液化石油气预混的实际空气量大于二甲醚液化气,相差约35%左右。

一般情况下,能够满足液化石油气的要求,就能满足二甲醚燃气。

所以引射器部分可以不换。

(2)额定热负荷

更换二甲醚液化气后,华白数和灶前压力都有较大的变化,要通过扩大喷嘴孔径来维持热负荷不变,改造后的灶具喷嘴直径可以按下式计算:

Dn/D1=(W1/Wn)1/2

式中:

Dn—二甲醚液化气的喷嘴孔径,mm;

D1—液化石油气喷嘴孔径,mm;

W1—液化石油气华白数,MJ/m3;

Wn—二甲醚液化气华白数,MJ/m3。

(3)风门

对于引射式灶具,除了热负荷,还由于一次空气系数的改变而影响灶具的正常工作,按下式调整风门:

apl/apn=(Wn/Wl)1/2·

(Pn/Pl)1/4·

(Fn/Fl)1/2

apl—液化石油气灶具的一次空气系数;

apn—二甲醚液化气灶具的一次空气系数;

Fn—液化石油气灶具火孔总面积,mm2;

Fl—二甲醚液化气灶具火孔总面积,mm2。

由于液化石油气的风门转板面积较大,在使用二甲醚液化气时风门用量较小,所以改造后的灶具风门转板应更换,使用前调整一下即可。

(4)点火喷嘴和点火距离

目前民用灶具常用的点火装置是脉冲和压电陶瓷点火器两种,影响点燃因素主要是:

①点火的附气喷嘴射流与点火器的位置;

②点火器电极间距离;

③附气喷嘴的孔径。

改造后的灶具由于二甲醚液化气比液化石油气的压力和热值低,所以对于点火的附气管喷嘴,二甲醚液化气比液化石油气的气流射流段对应的位置的截面积的大小不同,故在改造时扩大点火附气管孔径和调整电极与点火喷嘴的距离。

归结起来,目前液化石油气民用灶具改造为二甲醚液化气灶具时可采取扩大喷嘴孔径以维持热负荷不变、更换风门转板、调整点火距离并扩大点火的附气管径等措施。

燃烧试验测试结果表明二甲醚灶具的热负荷、热效率、烟气中CO体积分数和火焰稳定性均达到国家标准要求,改造取得成功。

实践表明,通过对灶具进行改造来满足气源变化后灶具的使用要求是完全可行的。

但是,这种改造,虽能达到GB16410-1996家用燃气灶具及GB/T16411-1996家用燃气用具的通用试验方法(参照)的要求,但是,未能将二甲醚自身含氧,在燃烧过程中所需空气量远低于液化石油气,从而使得二甲醚的预混气热值和理论燃烧温度都高于液化石油气这一优势体现出来。

用户普遍反映,二甲醚没有液化石油气耐用。

有关资料也显示,当用二甲醚替代液化石油气作为燃料时,等热值计算的结果是1.59吨DME相当于1吨LPG。

这也同时涉及到了二甲醚的合理定价问题。

目前,国内企业定价的基准是单位热量的价格要相等。

DME与LPG相比液态热值低,按单位热量价格相等的原则,瓶装供应单位质量的价格应为LPG的60%。

这就是目前国内DME价格低于LPG的主要原因。

五、我们的应用经验

我云南广信清洁能源有限公司在总结多年二甲醚应用经验的基础上,通过与普通家用燃气灶具的对比试验,结合二甲醚产品特性,研制开发出了一种完全区别于普通大气式燃烧方式的二甲醚新型节能产品,该产品的主要特点:

一是加大二甲醚与空气的混合空间,彻底改变传统燃烧器的结构,使二甲醚燃气在燃烧前先与足够的空气完全混合,使燃气的能量得到充分释放,大大提高热效率,减少燃气的“物理热损失”;

二是精选多种特殊材料,增大受热面积,由几千个微细小孔组成,使燃气均匀分布,叠加燃烧,使燃烧板将燃烧所产生的热能转化为红外线辐射传递,温度高达1000度,在高温作用下使燃气中的CO、HC和NOx三种气体的活性增强,促使其进行一定的氧化-还原化学反应,其中CO在高温下氧化成为无色、无毒的二氧化碳气体;

HC化合物在高温下氧化成水(H20)和二氧化碳;

NOx还原成氮气和氧气,使燃气燃烧的能量得到最充分和最有效的利用,更有效地使被加热物体吸收,大大减少了能量的“化学热损失”。

技术背景

目前国内普遍使用的家用燃气灶,在结构上大多采用双进气管、双喷嘴、圆形直火或旋火燃烧,内外环火之间间隔空间大,其存在的问题是:

1、燃烧器供气孔少,孔距疏散,孔径大,燃烧不完全,浪费燃气,污染环境;

2、燃烧器供气喷嘴孔径大,加上用双喷嘴供气,致使燃气单位流量加大;

3、采用空气调节板调节空气比例不当时,会产生离火、黄火、冒黑烟及部分供气孔只供气不燃烧,使燃气外溢;

4、火苗受空气调节板及燃烧器气孔疏少、分散的影响,热效率不高。

产品特点:

1、采用硅藻土等数十种特殊材料、经科学配方和特殊工艺处理,上千个火孔使燃气与空气混合后能充分燃烧,并有效抑制一氧化碳及氮氧化物的生成,降低一氧化碳95%,消除危害人体健康的隐患。

2、炉头气室内设有多块燃气导流板,使燃气及进入气室的空气充分混合,在斜面和平面导流板的作用下,使燃气在气室内稳定均匀分布,燃烧完全充分;

3、高温下燃烧板产生超红外线辐射传递,同时又有高猛火焰相叠加,热量更有效被加热物体吸收,火力猛,加热快,大大减少了物理热量的损失,灶台不烫手,厨房不升温。

4、由蓝火焰转换为超强红外线猛火无焰燃烧,无黑烟,不熏锅,即高效又环保。

5、燃烧温度高,与普通液化石油气灶具相比,二甲醚炉头燃烧温度比液化石油气炉头燃烧温度高出110多度。

6、耗气量少,与普通液化石油气灶具相比,二甲醚炉具耗气量比液化石油气灶具节省10%左右。

7、自然吸入适量空气,无需风门调节,抗风性能好,不易熄火,使用即方便,又安全。

8、重复燃烧、最大限度回收烟气的热量,热效率极高,节省燃气高达45%。

9、根据需要可以任意调节火力大小,炉头装拆简单,使用极其方便。

10、应用先进技术制造的燃烧板经久耐用,聚冷聚热不破裂,不变形,使用寿命可长达7~8年。

11、炉具气体密封、膜片、密封脂及胶管等全部采用聚四氟乙烯或三元乙丙橡胶为主的材料,有效避免了二甲醚对橡胶密封垫片、橡胶管等造成的腐蚀,提高了灶具使用的安全性。

六、实际应用举例

1、灶具选型:

烧液化石油气灶具选用广东佛山市顺德区容桂贵迪电器燃具厂《帅家》牌家用液化石油气灶具,型号:

JZ20Y1-168B06,燃气额定压力:

2800Pa,额定热流量:

Ø

1204.1kw,执行标准:

GB16410-1996家用燃气灶具国家标准。

灶具净重:

3.2kg,规格尺寸:

405×

305×

125mm。

外环火喷嘴直径为Ø

0.9mm,外环火喷嘴带混气孔;

内环火喷嘴直径为Ø

0.4mm,内环火喷嘴改为不带混气孔。

火盖分火孔数:

大火78/12个,小火27/6。

烧二甲醚对比灶具(简称雄淳专用灶,下同)选用雄淳厂“云南二甲醚气炉具专用”双眼灶,大炉头内环火喷嘴孔径0.7mm,外环火喷嘴孔径1.3mm;

小炉头内环火喷嘴孔径0.6mm,外环火喷嘴孔径1.1mm。

大火30/38个,小火24/21。

DME灶为我公司生产的专用炉头,选用《帅家》牌家用液化石油气灶具改造后的灶具。

可分别燃烧DME、LPG两种气,而不再对灶具进行改造,烧LPG时,炉头最高温度可达8080C。

调压器选用浙江省慈溪市盛合阀门有限公司生产的《盛合》牌家用液化石油气调压器,型号:

JYT-0.6型,额定流量:

0.6m3/h,进口压力:

0.03-1.56Mpa(30~1560kpa),出口压力:

2.80±

0.50kpa,关闭压

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 财务管理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2