关于生物化学大题.docx

上传人:b****1 文档编号:15056353 上传时间:2023-06-30 格式:DOCX 页数:26 大小:34.47KB
下载 相关 举报
关于生物化学大题.docx_第1页
第1页 / 共26页
关于生物化学大题.docx_第2页
第2页 / 共26页
关于生物化学大题.docx_第3页
第3页 / 共26页
关于生物化学大题.docx_第4页
第4页 / 共26页
关于生物化学大题.docx_第5页
第5页 / 共26页
关于生物化学大题.docx_第6页
第6页 / 共26页
关于生物化学大题.docx_第7页
第7页 / 共26页
关于生物化学大题.docx_第8页
第8页 / 共26页
关于生物化学大题.docx_第9页
第9页 / 共26页
关于生物化学大题.docx_第10页
第10页 / 共26页
关于生物化学大题.docx_第11页
第11页 / 共26页
关于生物化学大题.docx_第12页
第12页 / 共26页
关于生物化学大题.docx_第13页
第13页 / 共26页
关于生物化学大题.docx_第14页
第14页 / 共26页
关于生物化学大题.docx_第15页
第15页 / 共26页
关于生物化学大题.docx_第16页
第16页 / 共26页
关于生物化学大题.docx_第17页
第17页 / 共26页
关于生物化学大题.docx_第18页
第18页 / 共26页
关于生物化学大题.docx_第19页
第19页 / 共26页
关于生物化学大题.docx_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

关于生物化学大题.docx

《关于生物化学大题.docx》由会员分享,可在线阅读,更多相关《关于生物化学大题.docx(26页珍藏版)》请在冰点文库上搜索。

关于生物化学大题.docx

关于生物化学大题

1.蛋白质的α—螺旋结构有何特点?

答:

(1)多肽链主链绕中心轴旋转,形成棒状螺旋结构,每个螺旋含有3.6个氨基

酸残基,螺距为0.54nm,氨基酸之间的轴心距为0.15nm。

(2)α-螺旋结构的稳定主要靠链内氢键,每个氨基酸的N—H与前面第四个氨基酸的C=O形成氢键。

(3)天然蛋白质的α-螺旋结构大都为右手螺旋。

2.蛋白质的β—折叠结构有何特点?

答:

β-折叠结构又称为β-片层结构,它是肽链主链或某一肽段的一种相当伸展的结

构,多肽链呈扇面状折叠。

(1)两条或多条几乎完全伸展的多肽链(或肽段)侧向聚集在一起,通过相邻肽链主链上的氨基和羰基之间形成的氢键连接成片层结构并维持结构的稳定。

(2)β-折叠结构有平行排列和反平行排列两种。

(3)氨基酸之间的轴心距为0.35nm(反平行式)和0.325nm(平行式)。

3.简述蛋白质变性作用的机制。

答:

维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。

当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性,但共价键不破坏,即二硫健与肽键保持完好。

4.什么是蛋白质的变性作用?

蛋白质变性后哪些性质会发生改变?

答:

蛋白质变性作用是指在某些因素的影响下,蛋白质分子的空间构象被破坏,并

导致其性质和生物活性改变的现象。

蛋白质变性后会发生以下几方面的变化:

(1)生物活性丧失;

(2)理化性质的改变,包括:

溶解度降低,因为疏水侧链基团暴露;结晶能力丧失;分子形状改变,由球状分子变成松散结构,分子不对称性加大;粘度增加;光学性质发生改变,如旋光性、紫外吸收光谱等均有所改变。

(3)生物化学性质的改变,分子结构伸展松散,易被蛋白酶分解。

5.蛋白质有哪些重要功能。

答:

蛋白质的重要作用主要有以下几方面:

(1)生物催化作用:

酶是蛋白质,具有催化能力,新陈代谢的所有化学反应几乎都是在酶的催化下进行的。

(2)结构蛋白:

有些蛋白质的功能是参与细胞和组织的建成。

(3)运输功能:

如血红蛋白具有运输氧的功能。

(4)运动功能:

收缩蛋白(如肌动蛋白和肌球蛋白)与肌肉收缩和细胞运动密切相关。

(5)激素功能:

动物体内有些激素是蛋白质或多肽,是调节新陈代谢的生理活性物质。

(6)免疫功能:

抗体是蛋白质,能与特异抗原结合以清除抗原的作用,具有免疫功能。

(7)贮藏蛋白:

有些蛋白质具有贮藏功能,如植物种子的谷蛋白可供种子萌发时利用。

(8)接受和传递信息:

生物体中的受体蛋白能专一地接受和传递外界的信息。

(9)控制生长与分化:

有些蛋白参与细胞生长与分化的调控。

(10)毒蛋白:

能引起机体中毒症状和死亡的异体蛋白,如细菌毒素、蛇毒、蝎毒、蓖麻毒素等。

6下列试剂和酶常用于蛋白质化学的研究中:

CNBr、异硫氰酸苯酯、丹黄酰氯、脲、

6mol/LHCl、β-巯基乙醇、水合茚三酮、过甲酸、胰蛋白酶、胰凝乳蛋白酶。

其中哪一

个最适合完成以下各项任务?

(1)测定小肽的氨基酸序列。

(2)鉴定肽的氨基末端残基。

(3)不含二硫键的蛋白质的可逆变性;如有二硫键存在时还需加什么试剂?

(4)在芳香族氨基酸残基羧基侧水解肽键。

(4)在蛋氨酸残基羧基侧水解肽键。

(5)在赖氨酸和精氨酸残基羧基侧水解肽键。

答:

(a)异硫氢酸苯酯;(b)丹磺酰氯;(c)脲、β-巯基乙醇;(d)胰凝乳蛋白酶;(e)CNBr;(f)胰蛋白酶。

7扼要解释为什么大多数球状蛋白质在溶液中具有下列性质。

(1)在低pH时沉淀。

(2)当离子强度从零逐渐增加时,其溶解度开始增加,然后下降,最后出现沉淀。

(3)在一定的离子强度下,达到等电点pH值时,表现出最小的溶解度。

(4)加热时沉淀。

(5)加入一种可和水混溶的非极性溶剂减小其介质的介电常数,而导致溶解度的减小。

(6)如果加入一种非极性强的溶剂,使介电常数大大地下降会导致变性。

答:

pH=6.0比pH=2.0或pH=13.0时电泳能提供更好的分辨率。

因为在pH=6.0的条件下各肽带有的净电荷为:

A肽+1,B肽-1,C肽0;在pH=2.0的条件下净电荷分别为A肽+2,B肽+1,C肽+2,在pH=13.0的条件下净电荷分别为A肽-2,B肽-2,C肽-2。

8用下列哪种试剂最适合完成以下工作:

溴化氰、尿素、β-巯基乙醇、胰蛋白酶、过酸、

丹磺酰氯(DNS-Cl)、6mol/L盐酸、茚三酮、苯异硫氰酸(异硫氰酸苯酯)、胰凝乳蛋白酶。

(1)测定一段小肽的氨基酸排列顺序

(2)鉴定小于10-7克肽的N-端氨基酸

(3)使没有二硫键的蛋白质可逆变性。

如有二硫键,应加何种试剂?

(4)水解由芳香族氨基酸羧基形成的肽键

(5)水解由甲硫氨酸羧基形成的肽键

(6)水解由碱性氨基酸羧基形成的肽键

(1)在低pH时,羧基质子化,这样蛋白质分子带有大量的净正电荷,分子内

正电荷相斥使许多蛋白质变性,并随着蛋白质分子内部疏水基团向外暴露使蛋白质溶解

度降低,因而产生沉淀。

(2)加入少量盐时,对稳定带电基团有利,增加了蛋白质的溶解度。

但是随着盐离子

浓度的增加,盐离子夺取了与蛋白质结合的水分子,降低了蛋白质的水合程度,使蛋白

质水化层破坏,而使蛋白质沉淀。

(3)在等电点时,蛋白质分子之间的静电斥力最小,所以其溶解度最小。

(4)加热会使蛋白质变性,蛋白质内部的疏水基团被暴露,溶解度降低。

从而引起蛋

白质沉淀。

(5)非极性溶剂减少了表面极性基团的溶剂化作用,促使蛋白质分子之间形成氢键,

从而取代了蛋白质分子与水之间的氢键。

(6)介电常数的下降对暴露在溶剂中的非极性基团有稳定作用,结果促使蛋白质肽链

展开而导致变性。

9.什么是蛋白质的沉淀作用?

有哪些沉淀蛋白质的方法?

各方法沉淀的机理是什么?

答:

蛋白质在水溶液中可形成亲水的胶体,蛋白质从胶体溶液析出的现象称为蛋白质沉淀作用。

沉淀蛋白质的方法有:

盐析法:

在蛋白质溶液中加入高浓度的强电解质溶液如硫酸铵、硫酸钠等,蛋白质

从溶液中产生沉淀。

机理:

破坏了蛋白质分子表面的水化膜和双电层(净电荷),蛋白质溶液失去

稳定性而产生沉淀。

有机溶剂沉淀法:

乙醇、丙酮等有机溶剂可使蛋白质产生沉淀。

机理:

降低溶液的介电常数,也破坏了蛋白质的水化膜,蛋白质产生沉淀,

但必须低温操作,以防止蛋白质的变性。

等电点沉淀法:

用稀酸或稀碱调节蛋白质的溶液于某蛋白质等电点处,该蛋白质沉淀析出。

机理:

中和蛋白质表面水化膜。

重金属沉淀法:

蛋白质在等电点以上的pH下,易于重金属产生沉淀。

机理:

重金属与带负电的蛋白质羧基结合产生不可逆沉淀。

10何谓蛋白质的变性?

哪些因素会导致蛋白质的变性?

蛋白质变性的机理是什么?

变性蛋白质有何特征?

举例说明蛋白质变性的应用

答:

蛋白质变性作用是指天然的蛋白质在一些物理或化学因素的影响下,使其失去原有的生物学活性,并伴随着其物理、化学性质的改变称为蛋白质的变性。

使蛋白质变性的因素有:

(1)物理因素:

加热、剧烈的机械搅拌、辐射、超声波处理等;

(2)化学因素:

强酸、强碱、重金属、盐酸胍、尿素、表面活性剂等。

蛋白质变性的机理:

维持蛋白质高级结构的次级键破坏,二级以上的结构破坏,蛋白质从天然的紧密有序的状态变成松散无序的状态,但一级结构保持不变。

蛋白质变性后会发生以下几方面的变化:

(1)生物活性丧失;

(2)理化性质的改变,包括:

溶解度降低,结晶能力丧失;粘度增加;光学性质发生改变,如旋光性改变、紫外吸收增加;(3)侧链反应增强;(4)对酶作用敏感,易被蛋白酶水解。

蛋白质变性的应用:

(1)加热煮熟食物时食物蛋白质变性既有利于食物蛋白质的消化吸收,也可使食物中的致病菌中的蛋白质变性使其失去原有的生物学活性达到消毒灭菌的目的,使食物安全可靠;

(2)酒精消毒也是微生物蛋白质在酒精作用下产生变性;

(3)剧烈地搅打蛋清,蛋清变稠也是由于蛋清蛋白发生变性;

(4)面团在搓揉过程中面筋蛋白质发生变性,体积增加,易混入气体使面团变得松软有弹性等。

11DNA热变性有何特点?

Tm值表示什么?

答:

将DNA的稀盐溶液加热到70~100℃几分钟后,双螺旋结构即发生破坏,氢键断裂,两条链彼此分开,形成无规则线团状,此过程为DNA的热变性,有以下特点:

变性温度范围很窄,260nm处的紫外吸收增加;粘度下降;生物活性丧失。

Tm值代表核酸的变性温度(熔解温度、熔点)。

在数值上等于DNA变性时摩尔磷消光值(紫外吸收)达到最大变化值半数时所对应的温度。

12简述tRNA二级结构的组成特点及其每一部分的功能。

答:

tRNA的二级结构为三叶草结构。

其结构特征为:

(1)tRNA的二级结构由四臂、四环组成。

已配对的片断称为臂,未配对的片断称为环。

(2)叶柄是氨基酸臂。

其上含有CCA-OH3’,此结构是接受氨基酸的位置。

(3)氨基酸臂对面是反密码子环。

在它的中部含有三个相邻碱基组成的反密码子,可与mRNA上的密码子相互识别。

(4)左环是二氢尿嘧啶环(D环),它与氨基酰-tRNA合成酶的结合有关。

(5)右环是假尿嘧啶环(TψC环),它与核糖体的结合有关。

(6)在反密码子与假尿嘧啶环之间的是可变环,它的大小决定着tRNA分子大小。

13简述下列因素如何影响DNA的复性过程:

(1)阳离子的存在;

(2)低于Tm的温度;

(2)高浓度的DNA链

答:

(1)阳离子的存在可中和DNA中带负电荷的磷酸基团,减弱DNA链间的静电作用,促进DNA的复性;

(2)低于Tm的温度可以促进DNA复性;

(3)DNA链浓度增高可以加快互补链随机碰撞的速度、机会,从而促进DNA复性

14.RNA的功能多样性表现在哪几方面?

答:

RNA的功能多样性表现于:

(1)控制蛋白质的生物合成:

有三种RNA参与了蛋白质的合成:

rRNA:

构成核糖体是蛋白质的合成场所;

tRNA:

在蛋白质合成过程中携带氨基酸参与蛋白质的合成,是将mRNA的核苷顺序翻译成蛋白质的氨基酸顺序的“适配器分子”;

mRNA:

是蛋白质合成的模板,指导蛋白质的合成。

(2)作用于RNA转录后的加工:

snRNA。

(3)生物催化:

核酶具有催化功能。

(4)与遗传信息的加工与进化有关,asRNA。

病毒RNA是遗传信息的携带者。

14列述DNA双螺旋结构要点,并说明该螺旋模型提出的意义。

答:

DNA双螺旋的结构特点有:

(1)两条反相平行的多核苷酸链围绕同一中心轴互相缠绕形成右手螺旋;

(2)每圈螺旋由10对碱基组成,双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核苷酸之间的夹角是36°;

(3)碱基位于结构的内侧,而亲水的戊糖-磷酸主链位于螺旋的外侧,通过磷酸二酯

键相连,形成螺旋的骨架;

(4)碱基平面与轴垂直,糖环平面则与轴平行,双螺旋结构表面有两条螺形沟,一大

一小;

(5)碱基按A=T,G≡C配对互补,彼此以氢键相连。

该螺旋提出的意义:

直接揭示了遗传信息的传递机制,引发了人类对生物遗传性了解的一场革命。

15简述酶作为生物催化剂与一般化学催化剂的共性及其特性?

答:

(1)共性:

用量少而催化效率高;仅能改变化学反应的速度,不改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的活化能。

(2)特性:

酶作为生物催化剂的特点是催化效率更高,具有高度的专一性,因容易失活而具有反应条件温和性,活力可调节控制并与辅助因子有关。

16在很多酶的活性中心均有His残基参与,请解释?

答:

酶蛋白分子中组氨酸的侧链咪唑基pK值为6.0~7.0,在生理条件下,一半解离,一半不解离,因此既可以作为质子供体(不解离部分),又可以作为质子受体(解离部分),既是酸,又是碱,可以作为广义酸碱共同催化反应,因此常参与构成酶的活性中心。

17怎样证明酶是蛋白质?

答:

(1)酶能被酸、碱及蛋白酶水解,水解的最终产物都是氨基酸,证明酶是由氨基酸组成的。

(2)酶具有蛋白质所具有的颜色反应,如双缩脲反应、茚三酮反应、米伦反应、乙醛酸反应。

(3)一切能使蛋白质变性的因素,如热、酸碱、紫外线等,同样可以使酶变性失活。

(4)酶同样具有蛋白质所具有的大分子性质,如不能通过半透膜、可以电泳等。

(5)酶同其他蛋白质一样是两性电解质,并有一定的等电点。

总之,酶是由氨基酸组成的,与其他已知的蛋白质有着相同的理化性质,所以酶的化学本质是蛋白质。

18试述温度、pH对酶促反应速度的影响及其影响机理

答:

温度:

酶促反应速度存在着最适反应温度,当温度低于此温度,反应速度随温度的增加而增加;高于此温度,反应速度随温度的增加而降低。

机理:

低温下,温度升高,反应体系中的活化分子数增加,反应速度增加;当温度增加到一定程度时,引起酶变性失活,反应速度下降。

pH:

大多数酶促反应速度也存在最适反应pH,在此pH下,酶促反应速度达到最大。

机理:

pH影响酶活性中心解离基团的解离状态,从而影响与底物的结合状态与反应活性;极端的pH下可导致酶变性失活。

〔S〕:

在酶的总浓度一定时,较低浓度下反应速度随浓度的增加而增加,但增加的趋势越来越小,最后达到最大反应速度。

机理:

在酶浓度一定条件下,当底物浓度较低时,底物浓度增加,〔ES〕也随之增加,V=k3[ES],速度增加;当底物浓度较高时,〔ES〕不再随底物浓度增加而增加,即酶被底物饱和,此时酶促反应速度达到最大。

〔E〕:

在底物充足时,酶促反应速度随酶浓度的增加而呈直线上升。

机理:

当〔S〕远大于〔E〕时,〔E〕增加,〔ES〕增加,速度增加。

激活剂与抑制剂:

激活剂加快化学反应速度,抑制剂降低反应速度

机理:

激活剂通过激活酶或底物、抑制产物等方式加快正反应速度;抑制剂通过与酶可逆或不可逆结合改变酶的空间结构从而抑制酶的活性而达到降低反应速度。

19什么是酶的专一性?

酶的专一性分几类?

举例说明。

答:

酶的专一性:

酶对所作用的底物的选择性,一种酶只作用于一种或一类底物。

根据酶对底物的选择对象不同,酶的专一性分为:

绝对专一性:

一种酶选择一种底物发生作用。

如尿酶只水解尿素。

相对专一性;一种酶选择一类底物发生作用,又分键的专一性和基团专一性。

键的专一性:

酶对所作用的底物的键具有选择性,如:

酯酶只作用于酯键。

基团专一性:

酶对所作用的底物的键及其键一侧或两侧的基团具有选择性。

如胰蛋白酶作用于肽键时选择肽键的羧基端氨基酸为赖氨酸或精氨酸。

立体专一性:

酶对所作用的底物的立体构型具有选择性。

如:

L-氨基酸氧化酶只作用于L-氨基酸.

几何专一性:

酶对作用的底物的顺反异构体的选择性。

如顺乌头酸只作用于顺式乌头酸。

20答:

B族维生素与辅酶关系见下表所示:

维生素

化学

名称

辅酶

生化反应

B1

硫胺素

焦磷酸硫胺素(TPP)

脱羧酶

脱CO2

B2

核黄素

黄素单核苷酸(FMN)

脱氢酶

传递2H

黄素腺嘌呤二核苷酸(FAD)

B6

吡哆醛

磷酸吡哆醛

转氨酶

传递-NH2

B12

钴胺素

B12辅酶

变位酶

转移-CH3

H

生物素

生物胞素

羧化酶

传递CO2

PP

烟酸与

烟酰胺

烟酰胺腺嘌呤二核苷酸(NAD+)

脱氢酶

传递2H

烟酰胺腺嘌呤二核苷酸磷酸(NADP+)

B3

泛酸

辅酶A(CoA)

硫激酶

传递酰基

B11

叶酸

四氢叶酸(FH4)

转移酶

传递一碳单位

硫辛酸

硫辛酸

硫辛酸

α-酮酸脱羧酶

乙酰基载体

21糖代谢和脂代谢是通过那些反应联系起来的?

答:

(1)糖酵解过程中产生的磷酸二羟丙酮可转变为磷酸甘油,可作为脂肪合成中甘油的原料。

(2)有氧氧化过程中产生的乙酰CoA是脂肪酸和酮体的合成原料。

(3)脂肪酸分解产生的乙酰CoA最终进入三羧酸循环氧化。

(4)酮体氧化产生的乙酰CoA最终进入三羧酸循环氧化。

(5)甘油经磷酸甘油激酶作用后,转变为磷酸二羟丙酮进入糖代谢。

22什么是乙醛酸循环?

有何意义?

答:

乙醛酸循环是有机酸代谢循环,它存在于植物和微生物中,可分为五步反应,由于乙醛酸循环与三羧酸循环有一些共同的酶系和反应,将其看成是三羧酸循环的一个支路。

循环每一圈消耗2分子乙酰CoA,同时产生1分子琥珀酸。

琥珀酸产生后,可进入三羧酸循环代谢,或经糖异生途径转变为葡萄糖

乙醛酸循环的意义:

(1)乙酰CoA经乙醛酸循环可以和三羧酸循环相偶联,补充三羧酸循环中间产物的缺失。

(2)乙醛酸循环是微生物利用乙酸作为碳源的途径之一。

(3)乙醛酸循环是油料植物将脂肪转变为糖和氨基酸的途径。

23磷酸戊糖途径有什么生理意义?

答:

(1)产生的5-磷酸核糖是生成核糖,多种核苷酸,核苷酸辅酶和核酸的原料。

(2)生成的NADPH+H+是脂肪酸合成等许多反应的供氢体。

(3)此途径产生的4-磷酸赤藓糖与3-磷酸甘油酸可以可成莽草酸,进而转变为芳香族氨基酸。

(4)途径产生的NADPH+H+可转变为NADH+H+,进一步氧化产生ATP,提供部分能量。

24为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共同通路?

答:

(1)三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。

(2)糖代谢产生的碳骨架最终进入三羧酸循环氧化。

(3)脂肪分解产生的甘油通过酵解产生丙酮酸,后者转化成乙酰CoA后再进入三羧酸循环氧化,脂肪酸经β-氧化产生乙酰CoA也需进入三羧酸循环才能氧化。

(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。

所以,三羧酸循环是三大物质代谢共同通路。

26试说明丙氨酸的成糖过程。

答:

丙氨酸成糖是体内很重要的糖异生过程。

首先丙氨酸经转氨作用生成丙酮酸,丙酮酸进入线粒体转变成草酰乙酸。

但生成的草酰乙酸不能通过线粒体膜,为此须转变成苹果酸或天冬氨酸,后二者到胞浆里再转变成草酰乙酸。

草酰乙酸转变成磷酸烯醇式丙酮酸,后者沿酵解路逆行而成糖。

总之丙氨酸成糖须先脱掉氨基,然后绕过“能障”及“膜障”才能成糖。

27琥珀酰CoA的代谢来源与去路有哪些?

答:

(1)琥珀酰CoA主要来自糖代谢,也来自长链脂肪酸的ω-氧化。

奇数碳原子

脂肪酸,通过氧化除生成乙酰CoA,后者进一步转变成琥珀酰CoA。

此外,蛋氨酸,苏

氨酸以及缬氨酸和异亮氨酸在降解代谢中也生成琥珀酰CoA。

(2)琥珀酰CoA的主要代谢去路是通过柠檬酸循环彻底氧化成CO2和H2O。

琥珀酰CoA在肝外组织,在琥珀酸乙酰乙酰CoA转移酶催化下,可将辅酶A转移给乙酰乙酸,本身成为琥珀酸。

此外,琥珀酰CoA与甘氨酸一起生成δ-氨基-γ-酮戊酸(ALA),参与血红素的合成。

28柠檬酸循环中并无氧参加,为什么说它是葡萄糖的有氧分解途径

柠檬酸循环中有几处反应是底物脱氢生成NADH和FADH2,如异柠檬酸→草酰琥珀酸;α-酮戊二酸→琥珀酰CoA;琥珀酸→延胡索酸;L-苹果酸→草酰乙酸。

NADH和FADH2必须通过呼吸链使H+与氧结合成水,否则就会造成NADH和FADH2的积累,使柠檬酸循环的速度降低,严重时完全停止。

29增加以下各种代谢物的浓度对糖酵解有什么影响?

(a)葡萄糖-6-磷酸(b)果糖-1.6-二磷酸(C)柠檬酸(d)果糖-2.6-二磷酸

答:

(a)最初葡萄糖-6-磷酸浓度的增加通过增加葡萄糖6-磷酸异构酶的底物水平以及以后的酵解途径的各步反应的底物水平也随之增加,从而增加了酵解的速度。

然而葡萄糖-6-磷酸也是己糖激酶的一个别构抑制剂,因此高浓度的葡萄糖-6-磷酸可以通过减少葡萄糖进入酵解途径从而抑制酵解。

(b)果糖-1.6-二磷酸是由磷酸果糖激酶-1催化反应的产物,它是酵解过程中主要的调控点,增加果糖-1.6-二磷酸的浓度等于增加了所有随后糖酵解途径的反应的底物水平,所以增加了酵解的速度。

(c)柠檬酸是柠檬酸循环的一个中间产物,同时也是磷酸果糖激酶-1的一个反馈抑制剂,因而柠檬酸浓度的增加降低了酵解反应的速率。

(d)果糖-2,6-二磷酸是在磷酸果糖激酶-2(PFK-2)催化的反应中由果糖-6-磷酸生成的,因为它是磷酸果糖激酶-1(PFK-1)的激活因子,因而可以增加酵解反应的速度。

30糖酵解途径有何意义?

三羧酸循环有何意义?

磷酸戊糖途径有何意义?

答:

糖酵解途径的生理意义:

糖酵解生物细胞中普遍存在的途径,该途径在缺氧条件下可为细胞迅速提供能量,也是某些细胞如动物体内红细胞等在不缺氧条件下的能量来源;人在某些病理条件下如贫血、呼吸障碍或供氧不足情况下可通过糖酵解获得能量的方式;糖酵解也是糖的有氧氧化的前过程,还是糖异生作用大部分逆过程;同时糖酵解也是联系糖、脂肪和氨基酸代谢的重要途径。

TCA循环的生理意义:

TCA循环是有机体获得生命活动所需能量的主要途径;也是糖、脂、蛋白质等物质最终氧化途径;途径中形成多种重要的中间产物,可为生物合成提供碳源;同时糖酵解也是糖、脂、蛋白质等物质代谢和转化的中心枢纽,还是发酵产物重新氧化的途径。

磷酸戊糖途径意义:

该途径产生大量NADPH,可为细胞的生物合成提供还原力;维持谷胱甘肽、巯基酶的还原性、维持红细胞的完整状态,防止红细胞的氧化损伤及出现溶血;途径中产生大量的磷酸核糖是合成核苷酸及衍生物(辅酶)、DNA及其RNA的原料;HMS也可为细胞提供能量:

1mol葡萄糖通过此途径生成29molATP。

31何谓糖的异生作用?

糖的异生作用有何意义?

答:

动物体内由非糖物质转化成葡萄糖和糖原的过程称为糖的异生作用。

糖的异生作用的意义在于:

(1)在饥饿情况下糖异生对保证血糖浓度的相对恒定具有重要的意义;是肝补充或恢复糖原储备的重要途径;

(2)防止乳酸堆积引起酸中毒,避免乳酸的浪费;

(3)促进肝糖原的不断更新;

32在体内ATP有哪些生理作用?

(1)是机体能量的暂时贮存形式:

在生物氧化中,ADP能将呼吸链上电子传递过程中所释放的电化学能以磷酸化生成ATP的方式贮存起来,因此ATP是生物氧化中能量的暂时贮存形式。

(2)是机体其它能量形式的来源:

ATP分子内所含有的高能键可转化成其它能量形式,以维持机体的正常生理机能,例如可转化成机械能、生物电能、热能、渗透能、化学合成能等。

体内某些合成反应不一定都直接利用ATP供能,而以其他三磷酸核苷作为能量的直接来源。

如糖原合成需UTP供能;磷脂合成需CTP供能;蛋白质合成需GTP供能。

这些三磷酸核苷分子中的高能磷酸键并不是在生物氧化过程中直接生成的,而是来源于ATP。

(3)可生成cAMP参与激素作用:

ATP在细胞膜上的腺苷酸环化酶催化下,可生成cAMP,作为许多肽类激素在细胞内体现生理效应的第二信使。

33在脂肪生物合成过程中,软脂酸和硬脂酸是怎样合成的?

答:

(1)软脂酸合成:

软脂酸是十六碳饱和脂肪酸,在细胞液中合成,合成软脂酸

需要两个酶系统参加。

一个是乙酰CoA羧化酶,他包括三种成分,生物素羧化酶、生

物素羧基载体蛋白、转羧基酶。

由它们共同作用,催化乙酰CoA转变为丙二酸单酰CoA。

另一个是脂肪酸合成酶,该酶是一个多酶复合体,包括6种酶和一个酰基载体蛋白,在

它们的共同作用下,催化乙酰CoA和丙二酸单酰CoA,合成软脂酸其反应包括4步,

即缩合、还原、脱水、再缩合,每经过4步循环,可延长2个碳。

如此进行,经过7次

循环即可合成软脂酰—ACP。

软脂酰—ACP在硫激酶作用下分解,形成游离的软脂酸。

软脂酸的合成是从原始材料乙酰CoA开始的所以称之为从头合成途径。

(2)硬脂酸的合成,在动物和植物中有所不同。

在动物中,合成地点有两处,即线粒体和粗糙内质网。

在线粒体中,合成硬脂酸的碳原子受体是软

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2