无线传播理论资料.docx

上传人:b****5 文档编号:15209231 上传时间:2023-07-02 格式:DOCX 页数:31 大小:281.57KB
下载 相关 举报
无线传播理论资料.docx_第1页
第1页 / 共31页
无线传播理论资料.docx_第2页
第2页 / 共31页
无线传播理论资料.docx_第3页
第3页 / 共31页
无线传播理论资料.docx_第4页
第4页 / 共31页
无线传播理论资料.docx_第5页
第5页 / 共31页
无线传播理论资料.docx_第6页
第6页 / 共31页
无线传播理论资料.docx_第7页
第7页 / 共31页
无线传播理论资料.docx_第8页
第8页 / 共31页
无线传播理论资料.docx_第9页
第9页 / 共31页
无线传播理论资料.docx_第10页
第10页 / 共31页
无线传播理论资料.docx_第11页
第11页 / 共31页
无线传播理论资料.docx_第12页
第12页 / 共31页
无线传播理论资料.docx_第13页
第13页 / 共31页
无线传播理论资料.docx_第14页
第14页 / 共31页
无线传播理论资料.docx_第15页
第15页 / 共31页
无线传播理论资料.docx_第16页
第16页 / 共31页
无线传播理论资料.docx_第17页
第17页 / 共31页
无线传播理论资料.docx_第18页
第18页 / 共31页
无线传播理论资料.docx_第19页
第19页 / 共31页
无线传播理论资料.docx_第20页
第20页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

无线传播理论资料.docx

《无线传播理论资料.docx》由会员分享,可在线阅读,更多相关《无线传播理论资料.docx(31页珍藏版)》请在冰点文库上搜索。

无线传播理论资料.docx

无线传播理论资料

目录

3.1无线传播基本原理1

3.2无线传播特性3

3.2.1频段划分介绍3

3.2.2快衰落与慢衰落4

3.2.3传播损耗7

3.2.4多普勒效应9

3.2.5菲涅尔区12

3.3无线传播模型13

3.3.1传播模型概述13

3.3.2常用传播模型介绍14

2.自由空间的传播14

3.Okumura-Hata模型15

4.COST231-Hata模型18

5.COST231WalfishIkegami模型18

6.Keenan-Motley模型19

7.ASSET支持的模型20

3.3.3传播模型校正21

1.CW测试的原理21

2.CW测试方法21

3.传播模型校正及实例23

参考文献24

第三章无线传播理论

三.1无线传播基本原理

在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传播特性的研究、了解和据此进行的场强预测。

它是进行系统工程设计与研究频谱有效利用、电磁兼容性等课题所必须了解和掌握的基本理论。

众所周知,无线电波可通过多种方式从发射天线传播到接收天线:

直达波或自由空间波、地波或表面波、对流层反射波、电离层波,如图3-1-1所示。

就电波传播而言,发射机同接收机间最简单的方式是自由空间传播。

自由空间指该区域是各向同性(沿各个轴特性一样)且同类(均匀结构)。

自由空间波的其他名字有直达波或视距波。

如图3-1-1中(a)所示,直达波沿直线传播,所以可用于卫星和外部空间通信。

另外,这个定义也可用于陆上视距传播(两个微波塔之间),如图3-1-1中(b)所示。

第二种方式是地波或表面波。

地波传播可看作是三种情况的综合,即直达波、反射波和表面波。

表面波沿地球表面传播。

从发射天线发出的一些能量直接到达接收机;有些能量经从地球表面反射后到达接收机;有些通过表面波到达接收机。

表面波在地表面上传播,由于地面不是理想的,有些能量被地面吸收。

当能量进入地面,它建立地面电流。

这三种的表面波见图3-1-1(c)。

第三种方式即对流层反射波产生于对流层,对流层是异类介质,由于天气情况而随时间变化。

它的反射系数随高度增加而减少。

这种缓慢变化的反射系数使电波弯曲,如图3-1-1(d)所示。

对流层方式应用于波长小于10米(即频率大于30MHz)的无线通信中。

第四种方式是经电离层反射传播。

当电波波长小于1米(频率大于300MHz)时,电离层是反射体。

从电离层反射的电波可能有一个或多个跳跃,如图3-1-1(e)所示。

这种传播用于长距离通信。

除了反射,由于折射率的不均匀,电离层可产生电波散射。

另外,电离层中的流星也能散射电波。

同对流层一样,电离层也具有连续波动的特性,在这种波动上是随机的快速波动。

蜂窝系统的无线传播利用了第二种电波传播方式。

(a)直达波沿直线传播

(b)视距通信的应用

(c)地波传播

(d)对流层对无线电波的不规则散射

(e)无线电波通过电离层反射传播

图三-1-1不同的传播模式

在设计蜂窝系统时研究传播有两个原因:

第一,它对于计算覆盖不同小区的场强提供必要的工具。

因为在大多数情况下覆盖区域从几百米到几十公里,地波传播可以在这种情况下应用。

第二,它可计算邻信道和同信道干扰。

预测场强有三种方法:

第一种纯理论方法,适用于分离的物体,如山和其他固体物体。

但这种预测忽略了地球的不规则性。

第二种基于在各种环境的测量,包括不规则地形及人为障碍,尤其是在移动通信中普遍存在的较高的频率和较低的移动天线。

第三种方法是结合上述两种方法的改进模型,基于测量和使用折射定律考虑山和其他障碍物的影响。

在蜂窝系统中,至少有两种传播模型:

第一种是FCC建议的模型;第二种设计模型由Okumura提供,覆盖边界应考虑实际经验结果。

三.2无线传播特性

三.2.1频段划分介绍

无线电波分布在3Hz到3000GHz之间,在这个频谱内划分为12个带,如表3-2-1所示。

在不同的频段内的频率具有不同的传播特性。

对于移动通信来讲,我们只关心UHF的频段。

表三-2-1无线频段划分示意

Frequency

Classification

Designation

3~30Hz

30~300Hz

ExtremelyLowFrequency

ELF

300~3000Hz

VoiceFrequency

VF

3~30KHz

Very-lowFrequency

VLF

30~300KHz

LowFrequency

LF

300~3000KHz

MediumFrequency

MF

3~30MHz

HighFrequency

HF

30~300MHz

VeryHighFrequency

VHF

300~3000MHz

UltraHighFrequency

UHF

3~30GHz

SuperHighFrequency

SHF

30~300GHz

ExtremelyHighFrequency

EHF

300~3000GHz

对于WCDMA所用频段有2种:

上行(MHZ)

下行(MHZ)

A

1920-1980

2110-2170

B

1850-1910

1930-1990

我国计划WCDMA采用的是A段的频率。

三.2.2快衰落与慢衰落

根据上一节的论述,在一个典型的蜂窝移动通信环境中,由于接收机与发射机之间的直达路径被建筑物或其他物体所阻碍,所以,在蜂窝基站与移动台之间的通信不是通过直达路径,而是通过许多其他路径完成的。

在UHF频段,从发射机到接收机的电磁波的主要传播模式是散射,即从建筑物平面反射或从人工、自然物体折射,如图3-2-1所示。

①建筑物反射波②绕射波③直达波④地面反射波

图三-2-1多径传播模型

所有的信号分量合成产生一个复驻波,它的信号的强度根据各分量的相对变化而增加或减小。

其合成场强在移动几个车身长的距离中会有20~30dB的衰落,其最大值和最小值发生的位置大约相差1/4波长。

大量传播路径的存在就产生了所谓的多径现象,其合成波的幅度和相位随移动台的运动产生很大的起伏变化,通常把这种现象称为多径衰落或快衰落,如图3-2-2所示。

在性质上,多径衰落属于一种快速变化。

此外,这种传播特点还产生了时间色散的现象。

深衰落点在空间上的分布是近似的相隔半个波长(900MHz为17cm,1900MHz为8cm),如果此时手机天线处于这个深衰落点(当汽车中的手机用户由于红灯而驻留在这个深衰落点,我们称为红灯问题),话音质量将会变差。

研究表明,如移动单元所收到的各个波分量的振幅、相位和角度是随机的,那么合成信号的方位角和幅度的概率密度函数分别为:

0≤

≤2

(3-1)

r≥0(3-2)

其中r为标准偏差。

(3-1)式和(3-2)式分别表明方位角

在0~2

是均匀分布的,而电场强度概率密度函数是服从瑞利分布的。

故多径衰落也称瑞利衰落。

对于这种快衰落,基站采取的措施就是采用时间分集、频率分集和空间分集(极化分集)的办法。

时间分集主要靠符号交织、检错和纠错编码等方法,不同编码所具备的抗衰落特性不一样。

CDMA移动通信的空中信道编码方式参见相关协议。

频率分集理论的基础是相关带宽,即当两个频率相隔一定间隔后,就认为他们的空间衰落特性是不相关的,移动通信频段,大量数据表明两个频率间隔大于200KHz就可获得这种不相关性;频率分集主要采取扩频方式,在CDMA移动通信中,由于每个信道都工作在较宽频段(WCDMA为5MHz),本身就是一种扩频通信。

空间分集主要采用主分集天线接收的办法来解决,基站接收机对主、分集通道接收到的信号分别通过最大似然序列估值均衡器(MLSE)均衡后进行分集合并。

这种主分集接收的效果由主分集天线接收的不相关性所保证,所谓不相关性是指,主集天线接收到的信号与分集天线的接收信号不具有同时衰减的特性,这也就要求采用空间分集时主分集天线之间的间距大于10倍的无线信号波长(对于WCDMA系统要求天线间距大于1.5米),或者采用极化分集的办法保证主分集天线接收到的信号不具有相同的衰减特性。

而对于移动台(手机)而言,因为只有一根天线,因而不具有这种空间分集功能。

基站接收机对一定时间范围(时间窗)内不同时延信号的均衡能力也是一种空间分集的形式。

CDMA通信中,软切换时,移动台与多个基站同时联系,从中选取最好的信号送给交换机,这同样是一种空间分集的形式。

大量研究结果表明,移动台接收的信号除瞬时值出现快速瑞利衰落外,其场强中值随着地区位置改变出现较慢的变化,这种变化称为慢衰落,如图3-2-2所示。

它是由阴影效应引起的,所以也称作阴影衰落。

电波传播路径上遇有高大建筑物、树林、地形起伏等障碍物的阻挡,就会产生电磁场的阴影。

当移动台通过不同障碍物阻挡所造成的电磁场阴影时,就会使接收场强中值的变化。

变化的大小取决于障碍物的状况和工作频率,变化速率不仅和障碍物有关,而且与车速有关。

研究这种慢衰落的规律,发现其中值变动服从对数正态分布。

另外,由于气象条件随时间变化、大气介电常数的垂直梯度发生慢变化,使电波的折射系数随之变化,结果造成同一地点的场强中值随时间的慢变化。

统计结果表明,此中值变化也服从对数正态分布。

分布的标准偏差为rt。

由于信号中值变动在较大范围内随地点和时间的分布均服从对数正态分布,所以它们的合成分布仍服从对数正态分布。

在陆地移动通信中,通常信号中值随时间的变动远小于随地点的变动,因此可以忽略慢衰落的影响,r=rL。

但是在定点通信中,需要考虑慢衰落。

图三-2-2快衰落和慢衰落

总的来说,在蜂窝环境中有两种影响:

第一种是多路径,由于从建筑物表面或其他物体反射、散射而产生的短期衰落,通常移动距离几十米;第二种是直接可见路径产生的主要接收信号强度的缓慢变化,即长期场强变化。

也就是说,信道工作于符合瑞利分布的快衰落并叠加有信号幅度满足对数正态分布的慢衰落。

三.2.3传播损耗

在研究传播时,特定收信机功率接收的信号电平是一个主要特性。

由于传播路径和地形干扰,传播信号减小,这种信号强度减小称为传播损耗。

在研究电波传播时,首先要研究两个天线在自由空间(各向同性,无吸收,电导率为零的均匀介质)条件下的特性。

以理想全向天线为例。

经推导,自由空间的传播损耗为:

(3-3)

其中,f为频率,d为距离(公里)。

上式与距离d成反比。

当d增加一倍,自由空间路径损耗增加6分贝。

同时,当减小波长λ(提高频率f),路径损耗增大。

我们可以通过增大辐射和接收天线增益来补偿这些损耗。

当已知工作频率时,(3-3)式还可以写成:

(3-4)

式中

称为路径损耗斜率。

在实际的蜂窝系统中,根据测量结果显示,

的取值范围一般在3~5之间。

有了自由空间的路径损耗公式后,可以考虑在平坦的,但不理想的表面上2个天线之间的实际传播情况。

假设在整个传播路径表面绝对平坦(无折射)。

基站和移动台的天线高度分别为

(A处为

,B处为

),如图3-2-3所示。

(a)多反射情况(b)单反射情况(c)找出视距和地面反射的路径差的映象方法

图三-2-1平坦表面的传播

与自由空间的路径损耗相比,平坦地面传播的路径损耗为:

(3-5)

式中

该式表明增加天线高度一倍,可补偿6dB损耗;而移动台接收功率随距离的4次方变化,即距离增大一倍,接收到的功率减小12dB。

地形地物的种类千差万别,对移动通信电波传播损耗的影响也是错综复杂的。

在实际应用中是不可能存在绝对的平坦地形的。

对于复杂的地形一般可分为两类,即“准平滑地形”和“不规则地形”。

“准平滑地形”指表面起伏平缓,起伏高度小于或等于20米的地形,平均表面高度差别不大。

Okumura将起伏高度定义为距离移动台天线前方10公里内地形起伏10%与90%的差。

CCIR定义为收信机前方10~50公里处地形高度超过90%与超过10%的差。

除此以外的其它地形统称为“不规则地形”,按其状态可分为:

丘陵地形、孤立山岳、倾斜地形和水陆混合地形等。

在对市区及其附近地区分析传输损耗时,还可以依据地理区域的拥挤程度分类,如分成:

开阔区、密集市区、中等市区、郊区等。

在分析山区或者城市中摩天大楼密布的密集市区的传输损耗时,通常还要分析绕射损耗。

绕射损耗是对障碍物高度和天线高度的一种测量。

障碍物高度必须同传播波长比较。

同一障碍物高度对长波长产生的绕射损耗小于短波长。

预测路径损耗时,把这些障碍物看作尖形障碍,即“刃形”。

用物理光学中常用的方法可计算损耗。

图3-2-4中有两种障碍物。

第一种情况下,高H处的视距路径无障碍物。

第二种情况下,障碍物在电波路径中。

第一种中我们假设障碍物高度是负数,第二种假设障碍物高度是正数。

绕射损耗F可通过绕射常数v求出,v由下式给出。

(3-6)

不同绕射损耗的近似值由下式求出:

(3-7)

(a)负高度(b)正高度

图三-2-2经过刀刃的无线传播

三.2.4多普勒效应

在无线系统中多普勒效应引起频率变化的关系可以通过下面的公式给出:

(1)基站为频率源f,移动台接收到的频率fˊ为:

fˊ=f(1±V/c)(3-8)

式中:

v为移动台的移动速度,c为空中信号传播速度(设为3E8米/秒);

当移动台向基站方向移动时取“+”号,远离基站时取“-”号。

(2)移动台为频率源f,基站接收到的频率fˊ为

fˊ=f/(1±U/c)(3-9)

式中:

u为移动台的移动速度,c为空中信号传播速度(设为3E8米/秒)

当移动台向基站方向移动时取“-”号,远离基站时取“+”号。

下面分几种特殊情况进行讨论:

移动台向基站方向移动,速度为v时,如图3-2-5所示。

图三-2-1移动台向基站方向移动

基站的信号频率为f1,由于多普勒效应移动台收到的信号频率为f2;移动台以f2向基站发射信号,由于多普勒效应基站收到的频率为f3。

通过上面的公式将有:

f2=f1(1+v/c)

f3=f2/(1-v/c)

f3=f1(1+v/c)/(1-v/c)=f1(c+v)/(c-v)

相对频率变化为:

(f3-f1)/f1=2v/(c-v)(3-10)

移动台远离基站方向移动,速度为v时,如图3-2-6所示。

图三-2-2移动台远离基站方向移动

基站的信号频率为f1,由于多普勒效应移动台收到的信号频率为f2,移动台以f2向基站发射信号。

由于多普勒效应基站收到的频率为f3,通过上面的公式将有:

f2=f1(1-v/c)

f3=f2/(1+v/c)

f3=f1(1-v/c)/(1+v/c)=f1(c-v)/(c+v)

相对频率变化为:

(f3-f1)/f1=-2v/(c+v)(3-11)

由于移动台的移动速度相对于信号的传播速度c是较小的,所以在这两种情况下相对频率的变化是差不多的,只是方向相反,第一种情况是频率增加,第二种情况是频率减小。

相对频率与移动台速度的关系可以通过图3-2-7的曲线来说明。

图三-2-3相对频率与移动台速度的关系图

从图上可以看出,在移动台的速度为100km/h时,相对频率变化为0.19ppm,对于900M频率偏差为171Hz,对于2000M频率偏差为380Hz。

(3)移动台在两个基站间运动,速度为v,如图3-2-8所示。

在GSM通信系统中,进行切换时是上面的两种情况的叠加。

由于移动台通过BAtable来获取对相邻小区BCCH信道监测的信息,是控制移动台调整其频率+若干个kHz来对相邻小区的电平进行监测,这可能会出现由于多普勒频率变化,使移动台不能正确收到邻近小区的信号。

以图3-10为例,移动台监测基站1的电平,移动台收到的信号f2ˊ可能会出现在两个移动台调整频率中间。

使移动台无法正确监测到基站1的信号电平。

另一方面,在SACCH中上报的RXlev信息最少要30s发送一次,这样长的时间信息报告也将引起不能正常监测邻近小区电平,而导致切换不成功。

多普勒效应引起的频率变化,在信号上将引起基站接收到信号频率为f1(c+v)/(c+v),而以f1的采样时钟来接受数据。

引起接收数据错误,这也可能是影响切换的一个因素。

对于WCDMA宽带通信系统,多普勒频移引起的频率变化较通信带宽来说很小,产生的影响也很小。

图三-2-4移动台在两个基站间运动

三.2.5菲涅尔区

从发射机到接收机传播路径上,有直射波和反射波,反射波的电场方向正好与原来相反,相位相差180度。

如果天线高度较低且距离较远时,直射波路径与反射波路径差较小,则反射波将会产生破坏作用。

另外,直射波与反射波路径差为

,带来的相位差为

分别表示发射机和接收机离地面的高度,

为发射机到接收机间的水平距离,如图3-2-9所示。

图三-2-1直射与反射示意图

忽略从发射点通过地波传播到达接收机的一部分信号(该信号在超高频和甚高频段可以忽略不计),则总的接收场强和自由空间场强(单位为V/m)的比值的平方为:

(3-12)

这个式子表明,设n为自然数,当

时,可产生6dB的信号功率增益;而当

时,两路信号相互抵消。

这个角度的变化可能是由于天线高度、传播距离的变化或者两者共同作用所引起的。

仿真结果还表明,当

小于

时,

大于

,此时所得增益的大小随移动台向基站靠拢而摆动;当

大于

时,

小于

,当移动台远离基站移动时增益无摆动。

实际传播环境中,第一菲涅尔区定义为包含一些反射点的椭圆体,在这些反射点上反射波和直射波的路径差小于半个波长,即

小于

如图3-2-10所示。

第一菲涅尔区是主传播区,当阻挡物不阻挡第一菲涅尔区时,绕射损耗最小。

在长为

路径上某一点(到发射机距离为

,到接收机距离为

)的第一菲涅尔区的半径为:

(3-13)

图三-2-2第一菲涅尔区半径

举例说明:

在典型的城市基站覆盖距离为2km的路径上某点,假设该点距离发射天线100m,对于2000MHz频率而言该点第一菲涅尔区半径约为3.7米。

在第一菲涅尔区定义基础上,定义第n菲涅尔区为传播路径比第n-1菲涅尔区多半个波长的反射点集合,两条反射路径的相位差为180度。

第n菲涅尔区半径为:

(3-14)

如果直达路径跳过起伏不平的地形及地表的建筑物,则反射波会对直射波产生积极作用;否则就有可能成为具有破坏性的多径干扰,且破坏作用随频率增高而变大。

因此应该将基站的天线建得尽可能离地面高。

在后面的天线工程设计中会运用到这个结论。

事实上,根据经验用于视距微波链路设计只要55%的第一菲涅尔区保持无阻挡,其他菲涅尔区的情况基本不影响绕射损耗。

三.3无线传播模型

三.3.1传播模型概述

传播模型是移动通信网小区规划的基础。

模型的价值就是保证了精度,同时节省了人力、费用和时间。

在规划某一区域的蜂窝系统之前,选择信号覆盖区的蜂窝站址使其互不干扰,是一个重要的任务。

传播模型的准确与否关系到小区规划是否合理,运营商是否以比较经济合理的投资满足了用户的需求。

由于我国幅员辽阔,各省、市的无线传播环境千差万别。

例如,处于丘陵地区的城市与处于平原地区的城市相比,其传播环境有很大不同,两者的传播模型也会存在较大差异。

因此如果仅仅根据经验而无视各地不同地形、地貌、建筑物、植被等参数的影响,必然会导致所建成的网络或者存在覆盖、质量问题,或者所建基站过于密集,造成资源浪费。

随着我国移动通信网络的飞速发展,各运营商越来越重视传播模型与本地区环境相匹配的问题。

选择的预期模型是具有合理精度的传播模型,并且应为多年的移动无线环境的测量数据证明是正确的。

一个优秀的移动无线传播模型要具有能够根据不同的特征地貌轮廓,像平原、丘陵、山谷等,或者是不同的人造环境,例如开阔地、郊区、市区等,做出适当的调整。

这些环境因素涉及了传播模型中的很多变量,它们都起着重要的作用。

因此,一个良好的移动无线传播模型是很难形成的。

为了完善模型,就需要利用统计方法,测量出大量的数据,对模型进行校正。

一个好的模型还应该简单易用。

模型应该表述清楚,不应该给用户提供任何主观判断和解释,因为主观判断和解释往往在同一区域会得出不同的预期值。

一个好的模型应具有好的公认度和可接受性。

应用不同的模型时,得到的结构有可能不一致。

良好的公认度就显得非常重要了。

多数模型是预期无线电波传播路径上的路径损耗的。

所以传播环境对无线传播模型的建立起关键作用,确定某一特定地区的传播环境的主要因素有:

自然地形(高山、丘陵、平原、水域等);

人工建筑的数量、高度、分布和材料特性;

该地区的植被特征;

天气状况;

自然和人为的电磁噪声状况。

另外,无线传播模型还受到系统工作频率和移动台运动状况的影响。

在相同地区,工作频率不同,接收信号衰落状况各异;静止的移动台与高速运动的移动台的传播环境也大不相同。

一般分为:

室外传播模型和室内传播模型。

三.3.2常用传播模型介绍

几种常见的传播模型如表3-3-1所示:

表三-3-1几种常见的传播模型

模型名称

适用范围

Okumura-Hata

适用于900/1900MHz宏蜂窝预测

Cost231-Hata

适用于2GHz宏蜂窝预测

Cost231Walfish-Ikegami

适用于900和2GHz微蜂窝预测

Keenan-Motley

适用于900和2GHz室内环境预测

规划软件ASSET中使用

适用于900和2GHz宏蜂窝预测

下面就将介绍Okumura-Hata、COST231等常用模型以及我们目前使用的规划软件ASSET中使用的传播模型。

2.自由空间的传播

在研究传播时,特定收信机功率接收的信号电平是一个主要特性。

由于传播路径和地形干扰,传播信号减小,这种信号强度减小称为传播损耗。

在研究电波传播时,首先要研究两个天线在自由空间(各向同性,无吸收,电导率为零的均匀介质)条件下的特性。

以理想全向天线为例。

经推导,自由空间的传播损耗为:

Lp=32.4+20log(fMHz)+20log(dkm)(3-15)

其中,f为频率,d为距离(公里)。

上式与距离d成反比。

当d增加一倍,自由空间路径损耗增加6分贝。

同时,当减小波长λ

(提高频率f),路径损耗增大。

我们可以通过增大辐射和接收天线增益来补偿这些损耗。

当已知工作频率时,(3-15)式还可以写成

Lp=L0+10γlog(dkm)(3-16)

式中

称为路径损耗斜率。

在实际的蜂窝系统中,根据测量结果显示,

的取值范围一般在3~5之间。

有了自由空间的路径损耗公式后,可以考虑在平坦的,但不理想的表面上2个天线之间的实际传播情况。

假设在整个传播路径表面绝对平坦(无折射)。

基站和移动台的天线高度分别为

,如图3-2-3所示。

与自由空间的路径损耗相比,平坦地面传播的路径损耗为:

(3-17)

当式中

时,该式表明增加天线高度一倍,可补偿6dB损耗;而移动台接收功率随距离的4次方变化,即距离增大一倍,接收到的功率减小12dB。

3.Okumura-Hata模型

该模型由在日本测得的平均测量数据构成。

市区的路径损耗中值可以用下面的近似解析式表示:

(3-18)

式中:

——从基站到移动台的路径损耗,单位:

dB;

——载波频率,单位:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2