重大危险源分级标准1230195154.docx

上传人:b****6 文档编号:15679803 上传时间:2023-07-06 格式:DOCX 页数:39 大小:321.14KB
下载 相关 举报
重大危险源分级标准1230195154.docx_第1页
第1页 / 共39页
重大危险源分级标准1230195154.docx_第2页
第2页 / 共39页
重大危险源分级标准1230195154.docx_第3页
第3页 / 共39页
重大危险源分级标准1230195154.docx_第4页
第4页 / 共39页
重大危险源分级标准1230195154.docx_第5页
第5页 / 共39页
重大危险源分级标准1230195154.docx_第6页
第6页 / 共39页
重大危险源分级标准1230195154.docx_第7页
第7页 / 共39页
重大危险源分级标准1230195154.docx_第8页
第8页 / 共39页
重大危险源分级标准1230195154.docx_第9页
第9页 / 共39页
重大危险源分级标准1230195154.docx_第10页
第10页 / 共39页
重大危险源分级标准1230195154.docx_第11页
第11页 / 共39页
重大危险源分级标准1230195154.docx_第12页
第12页 / 共39页
重大危险源分级标准1230195154.docx_第13页
第13页 / 共39页
重大危险源分级标准1230195154.docx_第14页
第14页 / 共39页
重大危险源分级标准1230195154.docx_第15页
第15页 / 共39页
重大危险源分级标准1230195154.docx_第16页
第16页 / 共39页
重大危险源分级标准1230195154.docx_第17页
第17页 / 共39页
重大危险源分级标准1230195154.docx_第18页
第18页 / 共39页
重大危险源分级标准1230195154.docx_第19页
第19页 / 共39页
重大危险源分级标准1230195154.docx_第20页
第20页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

重大危险源分级标准1230195154.docx

《重大危险源分级标准1230195154.docx》由会员分享,可在线阅读,更多相关《重大危险源分级标准1230195154.docx(39页珍藏版)》请在冰点文库上搜索。

重大危险源分级标准1230195154.docx

重大危险源分级标准1230195154

重大危险源分级标准

(征求意见稿)

1适用范目

本规范规定了重大危险源评佔分级的方法和程序。

本规范为重大危险源评估分级技术规范,适用于包括储罐区、库区、生产场

所等重大危险源。

2规范性引用文件

下列文件中的条款,通过本规范的引用而成为本标准的条款。

凡是标注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本规范。

《中华人民共和国安全生产法》

《危险化学品安全管理条例》

《安全生产许可证条例》

《重大危险源辨识》(GB1S21S)

《安全评价通则》

《关于规范重大危险源监督与管理工作的通知》(安监总协调字:

2005]125号)

3术语和定义

下列术语和定义适用于本规范。

S.1重大危险源majorhazardinstallations

重大危险源是指长期地或者临时地生产、搬运、使用或者储存危险物品,且危险物品的数量等于或超过临界量的单元(包括场所和设施)。

4重大危险源分级判据

重大危险源分级判据如表1所示。

表1重大危险源分级判据

危险源等级

分级判据

死亡人数

一级重大危险源

可能造成50人(含50人)以上

二级重大危险源

可能适成10—29人

三级重大危险源

可能造成5—9人

四级重大危险源

可能造成1-2人

具体判别的依据如下:

1一级重大危险源:

可能造成死亡so人(含SO人)以上的重大危险源;

2二级重大危险源:

可能造成死亡10-29人的重大危险源;

3三级重大危险源:

可能造成死亡S-9人的重大危险源;

4四级重大危险源:

可能造成死亡1-2人的重大危险源。

5重大危险源死亡人数及财产损失计算方法

可能造成的死亡人数评价程序为:

1将重大危险源的周边区域划分成等间隔的网格区,用一笛卡尔坐标体系的网格覆盖城市的区域地图(如图1所示),网格间距大小取决于当地人口密度,以不影响计算结果为准。

2确定每一网格内的人员数量,通过火灾(室内火灾除外)、爆炸、毒物泄漏扩散事故后果模型计算重大危险源事故在每一网格中心处产生的热辐射、超压或毒物浓度的数值,然后通过热辐射、冲击波超圧、中毒概率函数将其其转化为造成死亡的概率。

3将每一网格中心的死亡率与人口数量相乘,即得到死亡的人数。

4将所有网格的死亡人数求和,即得到总的死亡人数。

具体用下式表示:

n

N=Z0・S・Vi

(1)

r-i

式中,N为总的死亡人数,D为第:

个网格的人口密度,S为网格面积,赛

为第Z个网格的个人死亡率,兀为网格的数口。

图1死亡人数讣算原理示意图

 

采用财产损失半径的方法评估事故后果造成的损失,并假定此半径内没有损失的财产与此半径外损失的财产相互抵消,或者说此半径内的财产完全损失,此半径外的财产完全无损失。

财产损失半径通过火灾、爆炸事故后果模型确定。

财产损失半径按下式计算:

式中,丘为z区半径,m;K为常量。

热辐射对建筑物的影响直接取决于热辐射强度的大小及作用时间的长短,以

引燃木材的热通量作为对建筑物破坏财产损失半径,计算公式如下:

页超内容

q=6730严+25400(3)

t=W/Mc(4)

式中,g为引燃木材的热通量(\V/m2),》为热辐射作用时间,即火灾持续

时间(S)o

6重大危险源评价分级程序

重大危险源的评价分级程序如下图所示。

如果一种危险物质具有多种事故形态,按照后果最严重的事故形态考虑,即遵循“最大危险原则”。

各类重大危险源具体事故情景选择、后果计算及死亡概率计算过程参见附录Ao

图2重大危险源评价分级程序

附录A:

重大危险源事故后果模型

A.1储罐区重大事故后果分析

A.1.1储罐区的主要事故后果类型

A.1.1.1池火灾

易燃液体如汽油、苯、屮醇、乙酸乙酯等,一旦从储罐及管路中泄漏到地面后,将向四周流淌、扩展,形成一定厚度的液池,若受到防火堤、隔堤的阻挡,液体将在限定区域(相当于围堰)内得以积聚,形成一定范围的液池。

这时,若遇到火源,液池可能被点燃,发生地面池火灾。

A.1.1.2蒸气云爆炸

易燃易爆气体如H2>天然气等,泄漏后随着风向扩散,与周围空气混合成易燃易爆混合物,在扩散扩过程中如遇到点火源,延迟点火,111于存在某些特殊原因和条件,火焰加速传播,产生爆炸冲击波超压,发生蒸气云爆炸。

易燃易爆的液化气体如液化石油气、液化丙烷、液化丁烷等,其沸点远小于环境温度,泄漏后将会山于自身的热量、地面传热、太阳辐射、气流运动等迅速蒸发,在液池上面形成蒸气云,与周圉空气混合成易燃易爆混合物,并且随着风向扩散,扩散扩过程中如遇到点火源,也会发生蒸气云爆炸。

A.i.i.s喷射火

对于易燃易爆气体如H2>天然气,以及易燃易爆的液化气体来说,泄漏后可能因摩擦产生的静电立即点火,产生喷射火。

A.1.1.4沸腾液体扩展蒸气云爆炸

易燃易爆的液化气体容器在外部火焰的烘烤下可能发生突然破裂,压力平衡被破坏,液体急剧气化,并随即被火焰点燃而发生爆炸,产生巨大的火球。

这种事故被称为沸腾液体扩展为蒸气云爆炸。

A.1.1.5中毒事故

毒性的液化气体如液氯、液氨等,山于沸点小于环境温度,泄漏后会因自身热量、地面传热、太阳辐射、气流运动等迅速蒸发,生成有毒蒸气云,密集在泄漏源周围,随后山于环境温度、地形、风力和湍流等因素影响产生漂移、扩散,

范围变大,浓度减小。

A.1.2储罐区主要事故后果模型

A.1.2.1池火灾事故后果模型

池火灾火焰的儿何尺寸及辐射参数按如下步骤计算。

1计算池直径

根据泄漏的液体量和地面性质,按下式可计算最大可能的池面积。

S=W/(Hminxp)

(1)

式中,S为液池面积(m2),矿为泄漏液体的质量(kg),°为液体的密度

(kg/m3)2L,”为最小油层厚度(m)o

最小物料层厚度与地面性质对应关系见表lo

表1不同性质地面物料层厚度表

地面性质

最小物料层厚度(m)

草地

0.020

粗糙地面

0.025

平整地面

0.010

混凝土地面

0.005

平静的水面

0.00IS

2确定火焰高度

讣算池火焰高度的经验公式如下:

〃=%=42x[®/(炖网)]响@)

式中:

L为火焰高度(m),D为池直径(m),mf为燃烧速率(kg/n2s),Po为空气密度(kg/m3),g为引力常数。

3计算火焰表面热通量

假定能量山圆柱形火焰侧面和顶部向周围均匀辐射,用下式计算火焰表面的热通量:

0.25兀D込H(•叫f%=、"八(3)

0.25ttD-+ttDL

式中,qo为火焰表面的热通量(kw/m?

),AHe为燃烧热(kJ/kg),兀为圆周率,f为热辐射系数(可取为0.15),mf为燃烧速率(kg/m®,其它符号同前。

4LI标接收到的热通量的讣算

口标接收到的热通量q(r)的计算公式为:

q(r)=依(1一0.058Inr)V(4)

式中,q(r)为目标接收到的热通量(kw/m2),q。

为由式(3)计算的火焰表面的热通量(kw/m^),r为U标到油区中心的水平距离(m),V为视角系数。

5视角系数的计算

角系数V与LI标到火焰垂直轴的距离与火焰半径之比S,火焰高度与直径之

比h有关。

(5)

八加+吩)

(6)

也可根据爆炸能量直接汁算。

K=tan“(($_l)/C+1)尸

其中A、B、J、K.Vh、Vv是为了描述方便而引入的中间变量,兀为圆周率。

A.1.2.2蒸气云爆炸事故后果模型

蒸气云爆炸产生的冲击波超压是其主要危害。

冲击波超压可通过传统的

TNT当量系数法进行讣算,将事故爆炸产生的爆炸能量等同于一定当量的TNT,

(1)TNT当量法

1确定闪蒸系数

在热力学数据资料的基础上,用下式估算燃料的闪蒸部分。

F=1-exp

L厶」(1士)

式中,F为蒸发系数,Cp为燃料的平均比热(kJ/kgK),4T为环境压力下容器内温度与沸点的温差(K),I为汽化热(kJ/kg)。

2计算云团中燃料的质量:

=2FW(15)

式中,硯为云团中燃料的质fi(kg),W为泄漏的燃料的质量(kg),F为闪蒸系数。

3计算TNT当量:

=aM[HJH吋(16)

式中,莎txt为燃料的TNT当量(kg),莎?

为云团中燃料的质量(kg),Hf为燃

料的燃烧热(MJ/kg),Htnt为TNT的爆热(MJ/kg),a包为TNT当量系数,推荐

1O1

ae=o.08o

④将实际距离转化为无因次距离:

&*/临(17)

式中,R为离爆炸点的实际距离(m),斤为无因次距离(m)。

在离爆炸点距离为R处,根据相应的斤值,查图1得到超压,进

无因次曲=聲冲才

而预测人员受伤害和建筑受破坏的情况。

图1APsR曲线

(2)直接计算法

在得到云团中燃料的质量的情况下,可按下式直接计算爆炸冲击波超压Ap。

In(卒/几)=-0.9126一1.5058(InZ)+0.1675(InZ)2一0.0320(InZ)3(1S)

(O.SWZW12)

(20)

(19)

E=\.SaWQc

式中,Aps为冲击波正相最大超压(Pa),Z为无量纲距离,几为环境压力,R为LI标到爆源的水平距离(m),E为爆源总能量(J),ci为蒸气云当量系数,一般取0.04,为蒸气云中对爆炸冲击波有实际贡献的燃料质量(Kg),Qc为燃料的燃烧热(J/Kg)o

A.1.2.8喷射火事故后果模型

加压的可燃物泄漏时形成射流,如果在泄漏裂口处被点燃,则形成喷射火。

假定火焰为圆锥形,并用从泄漏处到火焰长度4/5处的点源模型来表示。

1火焰长度计算

喷射火的火焰长度可用如下方程得到:

 

式中,L为火焰长度(m),He为燃烧热(J/kg),m为质量流速(kg/s)。

2热辐射的通量计算

距离火焰点源为X(m)处接收到的热辐射通量可用下式表示:

(22)

fHcmt

4欣\1000

式中,q为距离X处接收的热辐射的通量(KW/mJ,f为热辐射率,t为大气传输率。

(2S)

大气传输率T按下式计算:

r=1-0.0565hiX

A.1.2.4沸腾液体扩展为蒸气云爆炸事故后果模型

计算主要包括如下步骤。

1火球直径

D=2.665W0327(2斗)

式中,D为火球直径(m),"•为火球中消耗的可燃物质量(Kg)。

对单罐储存,%取罐容量的50%:

对双罐储存,"「取罐容量的70%;对多罐储存,疗取罐容量的90%。

2火球持续时间

Z=1.O891V0327(25)

式中,/为火球持续时间(s),矿同式(2士)。

3火球抬升高度

火球在燃烧时,将抬升到一定高度。

火球中心距离地面的高度H由下式估计:

H=D(26)

4火球表面热辐射能量

假设火球表面热辐射能量是均匀扩散的。

火球表面热辐射能量SEPIII下式计算:

SEP=F、mH」5Dh)(27)

式中,E为火球表面辐射的能量比,尽为火球的有效燃烧热(J/Kg)。

E与储罐破裂瞬间储存物料的饱和蒸气压力P(MPa)有关:

Fs=O.27P032(2S)

对于因外部火灾引起的BLEVE事故,上式中的尸值可取储罐安全阀启动压力Pv(MPa)的1.21倍,即:

P=1.21R(29)

尽由下式求得:

Ha=Hc-Hv-CpT(SO)

式中,He为燃烧热(J/kg),尽为常沸点下的蒸发热(J/kg),Cp为恒压比

热(J/(kg.K)),0为火球表面火焰温度与环境温度之差(K),一般来说T=1700Ko

5视角系数

视角系数F的讣算公式如下:

F=((£>/2)/r)2(SI)

式中,厂为目标到火球中心的距离(m)。

令口标与储罐的水平距离为X(m),则:

r=(X2+H2)05(S2)

6大气热传递系数

火球表面辐射的热能在大气中传输时,由于空气的吸收及散射作用,一部分能量损失掉了。

假定能量损失比为。

,则大气热传递系数匚=1一°。

和大气中的CO?

和H20的含量、热传输距离及辐射光谱的特性等因素有关。

匚可由以下的经验公式来求取:

r.=2.02(^^')-°^(S3)

式中,&为环境温度下空气中的水蒸气压(N/mJ,】•为目标到火球表面的距离(m)o

pw=PwXRH(S-l)

式中,兀为环境温度下的饱和水蒸气压(N/mJ,AH为相对湿度。

£)/2(35)

7火球热辐射强度分布函数

在不考虑障碍物对火球热辐射产生阻挡作用的条件下,距离储罐X处的热辐射强度g(W/mO可由下式计算:

q=SEPxFxra(S6)

A.l.2.5中毒事故后果模型

(1)泄漏模型

①液体泄漏速率模型

液体泄漏可根据流体力学中的柏努力方程计算泄漏量。

当裂口不规则时,可釆取等效尺寸代替;当泄漏过程中压力变化时,则往往采用经验公式。

柏努力方程如下:

07小严-E)+2g/2YP(37)

式中,Q为液体泄漏速率(kg/s),Cd为无量纲泄漏系数,是液体密度(kg/m3),〃是泄漏孔面积(m2),P为罐IE(Pa),P。

为大气压力(Pa),g为引力常数(9.Sm/s2),力为液压高度(m)。

液体出口速度可按下式计算:

Q

If=

JA・p(ss)

式中,”为液体出口速度(m/s),其他符号如前。

持续时间按下式计算:

人=[«0/(Cd•g)](A/./A)

式中,Mo为初始流速(m/s),为罐内液面积(m2)。

泄漏系数Cd的取值通常可从标准化学工程手册中查到。

对于管道破裂,Cd的典型取值为O.So表2为常用的液体泄漏系数数据。

表2液体泄漏系数G

雷诺数&

裂口形状

圆形(多边形)

三角形

长方形

>100

0.65

0.60

0.55

Wioo

0.50

0.45

0.40

这个方法没有考虑泄漏速率对时间的依赖关系(压力随时间而降低以及液压高度下降)。

因此,讣算出的泄漏速率是保守的最大可能泄漏速率。

②气体泄漏模型

压力气体泄漏通常以射流的方式发生,泄漏的速度与其流动的状态有关,其特征可用临界流(最大出口速度等于声速)或亚临界流来描述。

Pe】・ry等人用如下的关系式作为临界流的判断准则:

当式(士0)成立时,气体流动属音速流动;当式(知)成立时,气体流动属亚音速流动。

(40)

(41)

式中,P。

为环境大气压力(Pa),P为容器压力(Pa),k为气体的绝热指数,即定压比热Cp和定容比热G之比。

对于很多气体,临界比值(P/Po)cr近似为2,也就是说储压近似等于大气压力的两倍,此时流体泄漏的出口速度近似等于声速。

临界流的质量泄漏速率可

按下式计算:

(士2)

气体呈亚音速流动时,其泄漏量为:

IMk

r2]

RT

lk+1丿

Q=yc{ap.

(is)

式中,父是气体泄漏速率(kg/s),Cd为气体泄漏稀疏,为为裂口面积(m2),

是气体相对分子质量,斤是普适气体常数(S.S14S6JmoHK-O,:

T是气体的储

存温度(K),2八为气体膨胀因子,按式(妇)计算。

上述考虑的为理想气体的不可逆绝热扩散过程。

此外,没有考虑气体泄漏速率随时间的变化,因此使用初始储存条件必然导致保守的结果。

3两相流泄漏模型

Cude在1975年建议了两相流泄漏关系式。

假设源容器和泄漏点之间的管道长度和管道直径之比L/D>12,泄漏点压力与泄漏点上流压力之比玖/P二0.55。

具体计算方法如下:

(45)

第一步,按下式计算两相流的质量分数:

M「=

式中,加V为蒸发的液体占液体总量的比例,7:

是对应于泄漏点压力玖的平

衡温度(K),T是对应于泄漏点上流压力P的平衡温度(K),C”是液体的定圧比热[J/(kg-K)),H•是液体的蒸发热(J/kg)o

第二步,按下式计算两相流的平均密度:

p=!

(46)

PMyt\-Mv

PvP\

式中,p、。

•和0分别是两相流、蒸气和液体的密度(kg/m3)。

第三步,按下式计算两相流的质量泄漏速率Q(kg/S):

Q=ACj2p(P-Pc)(47)

式中,Cd为泄漏系数,多数情况下,取Cd=O.S,〃为裂口面积(m2),P为两相混合物的压力(Pa),Pc为临界压力(Pa)。

如果L/DV12,先按前面介绍的方法计算纯液体泄漏速率和两相流泄漏速率,再用内插法加以修正。

两相流实际泄漏速率的讣算公式为:

Q=QV}+(<21-evi)(12-L/D)/10(4S)

式中,Q、0门和0分别为两相流实际泄漏速率、按式Qs)计算出的两相流泄漏速率和纯液体泄漏速率(kg/S)。

如果L/DW2,—般认为泄漏为纯液体泄漏。

(3)非重气云扩散模型

①瞬间泄漏扩散模型

 

②连续泄漏扩散模型

 

式中,C为气云中危险物质浓度(kg/mJ,良为泄漏源有效髙度(m),O

为源瞬间泄漏量(kg),Q'为源连续泄漏速率(kg/s),V为风速(m/s),t为泄漏后的时间(s),b’、6和y分别为乂、y和Z方向的扩散系数(m)。

对于连续泄漏,平均时间取lOmin。

其中。

球o’与地面的有效粗糙度有关。

地面有效粗糙度长度如下表所示。

表5地而有效粗糙度长度表

地面类型

Zo/m

地面类型Z.,/m

草原、平坦开阔地

Wo.i

分散的髙矮建筑物(城市)1〜士

农作物地区

0.1〜0.5

密集的高镂建筑物(大城市)4

村落、分散的树林

0.5〜1

有效粗糙度Zo^O.lm地区的扩散参数按下表选取。

表4*ZoWo.lm地区的扩散参数

大气稳定度

oy/m

oz/m

A

0.22x(1+00001x)-^2

0.20x

B

0.16x(l+0.0001xp/2

0.12x

C

0.11x(l+0.0001x)-1/2

0.08x(l+0.0002x)-x/2

D

0.0Sx(l+0.0001x)-1/2

0.06x(l+0.0015x)-x/2

E

0.06x(1+0.000lx尸人

0.03x(l+0.0005x)-1/2

F

0.01x(1+00001x)-^2

0.016x(1+0.0005x)7/2

有效粗糙度Zo^O.lm的粗糙地形扩散系数为:

bl=b、0A

空=bj

/v(Z0)=l+«0Z0

fz(x,Zo)=(^0-CoInx)(do+勺Inx)~l

式中,Oy。

、O’。

按表士中的数值取值。

其他系数按表5取值。

表5不同大气稳泄度下的系数值

稳定

A

B

c

D

E

F

“0

0.04

0.11

0.15

o.ss

OS

0.57

bo

2

5

1.49

2.53

2.4

2.91

Co

1.10

1.5

0.01

0.1S

0.11

S

do

o.os

0.04

S2

0.55

0.S6

0.09

e0

64

5

0.S7

0.04

0.01

44

fo

0.4S

0.S5

0.01

2

682

0.75

go

6士

S

046

0.S5

0.27

S

0.05

0.01

O.OS

o.os

0.02

0.02

0.27

2S

9

2

2S

S

0.15

0.00

0.29

0.02

6

71

0.02

4

0.01

S

36

式(49)和式(50)中泄漏源有效高度是指泄漏气体形成的气云基本上变成水平状时气云中心的离地高度。

在大多数问题中,泄漏源有效高度难以与泄漏源实际高度相一致。

事实上,它等于泄漏源实际高度加泄漏源抬升高度。

泄漏源抬升高度可以用下面的公式近似汁算:

AH=V/[1.5+0.268P(T(51)

AH=2AVsd/V(52)

式中:

AH是泄漏源抬升高度(m),毗是气云出口速度(m/s),d是出口直径(m),V■是环境风速(m/s),pn是环境大气压力(Pa),Ts是气云出口温度(K),匚是环境大气温度(K)。

汁算出泄漏源抬升高度以后,将泄漏源抬升高度与泄漏源实际高度相加就得到了泄漏源有效高度。

(3)重气云扩散模型

常用模型有盒子模型和平板模型两类。

盒子模型用来描述瞬间泄漏形成的重气云团的运动,平板模型用来描述连续泄漏形成的重气云羽的运动。

这两类模型的核心是因空气进入而引起的气云质量增加速率方程。

1盒子模型

盒子模型使用如下假设:

页脚内容52

 

I、重气云团为正立的坍塌圆柱体,圆柱体初始高度等于初始半径的一半。

II、在重气云团内部,温度、密度和危险气体浓度等参数均匀分布。

III、重气云团中心的移动速度等于风速。

77H/////////////?

?

/////

重气扩散的盒子模型示意图如下图所示。

―»空气通过界面进入云团―>云团向外的径向运动

图2重气云团盒子模型

坍塌圆柱体的径向蔓延速度山下式确定:

Vf=^/dt=[(pp-pJ/pa]/?

}*2(53)

式中,匕•为圆柱体的径向蔓延速度(m/s),r为圆柱体半径(m),"为圆柱体高度(m),t为泄漏后时间(s)。

等式两边同时乘以",上式变成下面的形式:

亦/力=2{g[(Q-PaVPa防J''2(54)

=2仏,一几]/0“}/刖"

由于假设重气云团和环境之间没有热量交换,重气云团的浮力将守恒,即:

g[(Q°-几"几卜=g[(/\-几"几就(55)

将上式代入式(5S),积分后得到:

/=c+2{g[s-几)/pa/兀yr(56)

式中,r。

为重气云团的初始半径(m),%为重气云团的初始体积(nV),p()为重气云团的初始密度(kg/nV)o

山于假设重气云团是圆柱体,初始高度等于初始半径的一半,因此重气云团初始半径的讣算公式为:

乙=(2%/兀严(57)

随着空气的不断进入,云团的高度和体积也将不断变化。

云团体积随时间的

(5S)

变化速率山下式确定:

dV/dt=(^R2)Vt+(2^Rh)VE

式中,重气云团体积V=^h,农和厲分别为空气从顶部和边缘进入重气云团的速率(m/s)。

由于重气云团内部危险气体质量守恒,因此,在重气云团扩散过程中,下式存立:

C/Co=Vo/V=(hor;)/(

式中,Co和C分别为初始时刻和(时刻重气云团内部危险物质浓®(kg/m5)o任意时刻重气云团的半径按式(56)计算。

如果知道任意时刻重气云团高度的计算公式,利用上式就可计算任意时刻重气云团内部

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2