化工原理及化工工艺-完整教材PPT格式课件下载.ppt

上传人:wj 文档编号:1574213 上传时间:2023-05-01 格式:PPT 页数:138 大小:1,009KB
下载 相关 举报
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第1页
第1页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第2页
第2页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第3页
第3页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第4页
第4页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第5页
第5页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第6页
第6页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第7页
第7页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第8页
第8页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第9页
第9页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第10页
第10页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第11页
第11页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第12页
第12页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第13页
第13页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第14页
第14页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第15页
第15页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第16页
第16页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第17页
第17页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第18页
第18页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第19页
第19页 / 共138页
化工原理及化工工艺-完整教材PPT格式课件下载.ppt_第20页
第20页 / 共138页
亲,该文档总共138页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

化工原理及化工工艺-完整教材PPT格式课件下载.ppt

《化工原理及化工工艺-完整教材PPT格式课件下载.ppt》由会员分享,可在线阅读,更多相关《化工原理及化工工艺-完整教材PPT格式课件下载.ppt(138页珍藏版)》请在冰点文库上搜索。

化工原理及化工工艺-完整教材PPT格式课件下载.ppt

(1)按状态分为气体、液体和超临界流体等;

(2)按可压缩性分为不可压流体和可压缩流体;

(3)按是否可忽略分子之间作用力分为理想流体与粘性流体(或实际流体);

(4)按流变特性可分为牛顿型和非牛倾型流体;

流体区别于固体的主要特征是具有流动性,其形状随容器形状而变化;

受外力作用时内部产生相对运动。

流动时产生内摩擦从而构成了流体力学原理研究的复杂内容之一,1.1.2流体流动的考察方法,流体是由大量的彼此间有一定间隙的单个分子所组成。

在物理化学(气体分子运动论)重要考察单个分子的微观运动,分子的运动是随机的、不规则的混乱运动。

这种考察方法认为流体是不连续的介质,所需处理的运动是一种随机的运动,问题将非常复杂。

1.1.2.1连续性假设(Continuumhypotheses)在化工原理中研究流体在静止和流动状态下的规律性时,常将流体视为由无数质点组成的连续介质。

连续性假设:

假定流体是有大量质点组成、彼此间没有间隙、完全充满所占空间连续介质,流体的物性及运动参数在空间作连续分布,从而可以使用连续函数的数学工具加以描述。

1.1.2.2流体流动的考察方法拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(位移、数度等)与时间的关系。

可见,拉格朗日法描述的是同一质点在不同时刻的状态。

欧拉法在固定的空间位置上观察流体质点的运动情况,直接描述各有关参数在空间各点的分布情况合随时间的变化,例如对速度u,可作如下描述:

1.1.2流体流动的考察方法,任取一微元体积流体作为研究对象,进行受力分析,它受到的力有质量力(体积力)和表面力两类。

(1)质量力(体积力)与流体的质量成正比,质量力对于均质流体也称为体积力。

如流体在重力场中所受到的重力和在离心力场所受到的离心力,都是质量力。

(2)表面力表面力与作用的表面积成正比。

单位面积上的表面力称之为应力。

垂直于表面的力p,称为压力(法向力)。

单位面积上所受的压力称为压强p。

平行于表面的力F,称为剪力(切力)。

单位面积上所受的剪力称为应力。

1.1.3流体流动中的作用力,1.2.流体静力学基本方程(Basicequationsoffluidstatics),*本节主要内容流体的密度和压强的概念、单位及换算等;

在重力场中的静止流体内部压强的变化规律及其工程应用。

*本节的重点重点掌握流体静力学基本方程式的适用条件及工程应用实例。

*本节的难点本节点无难点。

1.2流体静力学基本方程,流体静力学主要研究流体流体静止时其内部压强变化的规律。

用描述这一规律的数学表达式,称为流体静力学基本方程式。

先介绍有关概念:

1.2.1流体的密度,单位体积流体所具有的质量称为流体的密度。

以表示,单位为kg/m3。

(1-1)式中-流体的密度,kg/m3;

m-流体的质量,kg;

V-流体的体积,m3。

当V0时,m/V的极限值称为流体内部的某点密度。

1.2.1.1液体的密度液体的密度几乎不随压强而变化,随温度略有改变,可视为不可压缩流体。

纯液体的密度可由实验测定或用查找手册计算的方法获取。

混合液体的密度,在忽略混合体积变化条件下,可用下式估算(以1kg混合液为基准),即(1-2)式中i-液体混合物中各纯组分的密度,kg/m3;

i-液体混合物中各纯组分的质量分率。

1.2.1流体的密度,1.2.1.2气体的密度气体是可压缩的流体,其密度随压强和温度而变化。

气体的密度必须标明其状态。

纯气体的密度一般可从手册中查取或计算得到。

当压强不太高、温度不太低时,可按理想气体来换算:

(1-3)式中p气体的绝对压强,Pa(或采用其它单位);

M气体的摩尔质量,kg/kmol;

R气体常数,其值为8.315;

T气体的绝对温度,K。

1.2.1流体的密度,对于混合气体,可用平均摩尔质量Mm代替M。

(1-4)式中yi-各组分的摩尔分率(体积分率或压强分率)。

(下标0表示标准状态),(1-3a),1.2.1.2气体的密度,或,1.2.2流体的压强及其特性,垂直作用于单位面积上的表面力称为流体的静压强,简称压强。

流体的压强具有点特性。

工程上习惯上将压强称之为压力。

在SI中,压强的单位是帕斯卡,以Pa表示。

但习惯上还采用其它单位,它们之间的换算关系为:

(2)压强的基准压强有不同的计量基准:

绝对压强、表压强、真空度。

1.2.2.1流体的压强

(1)定义和单位.,1atm=1.033kgf/cm2=760mmHg=10.33mH2O=1.0133bar=1.0133105Pa,1.2.1.1流体的压强绝对压强以绝对零压作起点计算的压强,是流体的真实压强。

表压强压强表上的读数,表示被测流体的绝对压强比大气压强高出的数值,即:

表压强绝对压强大气压强真空度真空表上的读数,表示被测流体的绝对压强低于大气压强的数值,即:

真空度大气压强绝对压强绝对压强,表压强,真空度之间的关系见图1-2。

图压强的基准和量度,1.2.1.2流体压强的特性,流体压强具有以下两个重要特性:

流体压力处处与它的作用面垂直,并且总是指向流体的作用面;

流体中任一点压力的大小与所选定的作用面在空间的方位无关。

熟悉压力的各种计量单位与基准及换算关系,对于以后的学习和实际工程计算是十分重要的。

1.2.3流体静力学基本方程(Basicequationsoffluidstatics),推导过程使用条件物理意义工程应用1.2.3.1方程式推导图1-3所示的容器中盛有密度为的均质、连续不可压缩静止液体。

如流体所受的体积力仅为重力,并取z轴方向与重力方向相反。

若以容器底为基准水平面,则液柱的上、下底面与基准水平面的垂直距离分别为Z1、Z2。

现于液体内部任意划出一底面积为A的垂直液柱。

图1-3流体静力学基本方程推导,

(1)向上作用于薄层下底的总压力,PA

(2)向下作用于薄层上底的总压力,(P+dp)A(3)向下作用的重力,由于流体处于静止,其垂直方向所受到的各力代数和应等于零,简化可得:

1.2.3.1方程式推导,图1-3流体静力学基本方程推导,1.2.3.1流体静力学基本方程式推导,在图1-4中的两个垂直位置2和1之间对上式作定积分由于和g是常数,故,(1-5),(1-5a),若将图1-4中的点1移至液面上(压强为p0),则式1-5a变为:

上三式统称为流体静力学基本方程式。

图1-4静止液体内压力的分布,(1-5b),Pa,J/kg,1.2.3.2流体静力学基本方程式讨论,

(1)适用条件重力场中静止的,连续的同一种不可压缩流体(或压力变化不大的可压缩流体,密度可近似地取其平均值)。

(2)衡算基准衡算基准不同,方程形式不同。

若将(1-5)式各项均除以密度,可得将式(1-5b)可改写为:

压强或压强差的大小可用某种液体的液柱高度表示,但必须注明是何种液体。

m,m,(1-5c),(1-5d),1.2.3.2流体静力学基本方程式讨论,(3)物理意义,(i)总势能守恒重力场中在同一种静止流体中不同高度上的微元其静压能和位能各不相同,但其总势能保持不变。

(ii)等压面在静止的、连续的同一种液体内,处于同一水平面上各点的静压强相等-等压面(静压强仅与垂直高度有关,与水平位置无关)。

要正确确定等压面。

静止液体内任意点处的压强与该点距液面的距离呈线性关系,也正比于液面上方的压强。

(iii)传递定律液面上方的压强大小相等地传遍整个液体。

1.2.4静力学基本方程式的应用,流体静力学原理的应用很广泛,它是连通器和液柱压差计工作原理的基础,还用于容器内液柱的测量,液封装置,不互溶液体的重力分离(倾析器)等。

解题的基本要领是正确确定等压面。

本节介绍它在测量液体的压力和确定液封高度等方面的应用。

1.2.3.1压力的测量测量压强的仪表很多,现仅介绍以流体静力学基本方程式为依据的测压仪器-液柱压差计。

液柱压差计可测量流体中某点的压力,亦可测量两点之间的压力差。

常见的液柱压差计有以下几种。

普通U型管压差计倒U型管压差计倾斜U型管压差计微差压差计,图1-常见液柱压差计,()普通U型管压差计,p0,p0,0,p1,p2,R,a,b,U型管内位于同一水平面上的a、b两点在相连通的同一静止流体内,两点处静压强相等,式中工作介质密度;

0指示剂密度;

RU形压差计指示高度,m;

侧端压差,Pa。

若被测流体为气体,其密度较指示液密度小得多,上式可简化为,(1-6),(1-6a),(b)倒置U型管压差计(Up-sidedownmanometer),用于测量液体的压差,指示剂密度0小于被测液体密度,U型管内位于同一水平面上的a、b两点在相连通的同一静止流体内,两点处静压强相等,由指示液高度差R计算压差若0,(1-7),(1-7a),(c)微差压差计,在U形微差压计两侧臂的上端装有扩张室,其直径与U形管直径之比大于10。

当测压管中两指示剂分配位置改变时,扩展容器内指示剂的可维持在同水平面压差计内装有密度分别为01和02的两种指示剂。

上。

有微压差p存在时,尽管两扩大室液面高差很小以致可忽略不计,但U型管内却可得到一个较大的R读数。

对一定的压差p,R值的大小与所用的指示剂密度有关,密度差越小,R值就越大,读数精度也越高。

(1-8),【例2-1】,如图所示密闭室内装有测定室内气压的U型压差计和监测水位高度的压强表。

指示剂为水银的U型压差计读数R为40mm,压强表读数p为32.5kPa。

试求:

水位高度h。

解:

根据流体静力学基本原理,若室外大气压为pa,则室内气压po为,例2-1附图,1.2.3.2液封高度,液封在化工生产中被广泛应用:

通过液封装置的液柱高度,控制器内压力不变或者防止气体泄漏。

为了控制器内气体压力不超过给定的数值,常常使用安全液封装置(或称水封装置)如图1-6,其目的是确保设备的安全,若气体压力超过给定值,气体则从液封装置排出。

图1-6安全液封,1.2.3.2液封高度,液封还可达到防止气体泄漏的目的,而且它的密封效果极佳,甚至比阀门还要严密。

例如煤气柜通常用水来封住,以防止煤气泄漏。

液封高度可根据静力学基本方程式进行计算。

设器内压力为p(表压),水的密度为,则所需的液封高度h0应为为了保证安全,在实际安装时使管子插入液面下的深度应比计算值略小些,使超压力及时排放;

对于后者应比计算值略大些,严格保证气体不泄漏。

(1-9),小结,密度具有点特性,液体的密度基本上不随压强而变化,随温度略有改变;

气体的密度随温度和压强而变。

混合液体和混合液体的密度可由公式估算。

与位能基准一样,静压强也有基准。

工程上常用绝对压强和表压两种基准。

在计算中,应注意用统一的压强基准。

压强具有点特性。

流体静力学就是研究重力场中,静止流体内部静压强的分布规律。

对流体元(或流体柱)运用受力平衡原理,可以得到流体静力学方程。

流体静力学方程表明静止流体内部的压强分布规律或机械能守恒原理。

U形测压管或U形压差计的依据是流体静力学原理。

应用静力学的要点是正确选择等压面。

1.3流体流动的基本方程(Basicequationsoffluidflow),*本节内容提要主要是研究和学习流体流动的宏观规律及不同形式的能量的如何转化等问题,其中包括:

(1)质量守恒定律连续性方程式

(2)能量守恒守恒定律柏努利方程式推导思路、适用条件、物理意义、工程应用。

*本节学习要求学会运用两个方程解决流体流动的有关计算问题,方程式子牢记灵活应用高位槽安装高度?

物理意义明确解决问题输送设备的功率?

适用条件注意,1.3流体流动的基本方程(流体动力学),1.3流体流动的基本方程(Basicequationsoffluidflow),*本节重点以连续方程及柏努利方程为重点,掌握这两个方程式推导思路、适用条件、用柏努利方程解题的要点及注意事项。

通过实例加深对这两个方程式的理解。

*本节难点无难点,但在应用柏努利方程式计算流体流动问题时要特别注意流动的连续性、上、下游截面及基准水平面选取正确性。

正确确定衡算范围(上、下游截面的选取)是解题的关键。

本节主要是研究流体流动的宏观规律及不同形式的能量的如何转化等问题,先介绍有关概念:

1.3.1流量与流速,1.3.1.1流量流量有两种计量方法:

体积流量、质量流量体积流量-以Vs表示,单位为m3/s。

质量流量-以Ws表示,单位为kg/s。

体积流量与质量流量的关系为:

(1-10)由于气体的体积与其状态有关,因此对气体的体积流量,须说明它的温度t和压强p。

通常将其折算到273.15K、1.0133105a下的体积流量称之为“标准体积流量(Nm3/h)”。

1.3流体流动的基本方程(Basicequationsoffluidflow),1.3.1.2流速a.平均流速(简称流速)u流体质点单位时间内在流动方向上所流过的距离,称为流速,以u表示,单位为m/s。

流体在管截面上的速度分布规律较为复杂,工程上为计算方便起见,流体的流速通常指整个管截面上的平均流速,其表达式为:

u=Vs/A(1-11)式中,A垂直于流动方向的管截面积,m2。

故(1-12),1.3.1流量与流速,1.3.1.2流速,b.质量流速G单位截面积的管道流过的流体的质量流量,以G表示,其单位为kg/(m2s),其表达式为(1-13)由于气体的体积随温度和压强而变化,在管截面积不变的情况下,气体的流速也要发生变化,采用质量流速为计算带来方便。

1.3.2非稳态流动与稳态流动,非稳态流动:

各截面上流体的有关参数(如流速、物性、压强)随位置和时间而变化,T=f(x,y,z,t)。

如图1-7a所示流动系统。

稳态流动:

各截面上流动参数仅随空间位置的改变而变化,而不随时间变化,T=f(x,y,z)。

如图1-7b所示流动系统。

化工生产中多属连续稳态过程。

除开车和停车外,一般只在很短时间内为非稳态操作,多在稳态下操作。

本章着重讨论稳态流动问题。

图1-7流动系统示意图,1.3.3连续性方程(Equationofcontinuity),

(1)推导连续性方程是质量守恒定律的一种表现形式,本节通过物料衡算进行推导。

在稳定连续流动系统中,对直径不同的管段作物料衡算,如图1-8所示。

以管内壁、截面1-1与2-2为衡算范围。

由于把流体视连续为介质,即流体充满管道,并连续不断地从截面1-1流入、从截面2-2流出。

对于连续稳态的一维流动,如果没有流体的泄漏或补充,由物料衡算的基本关系:

输入质量流量=输出质量流量,图1-8连续性方程的推导,若以s为基准,则物料衡算式为:

ws1=ws2因ws=uA,故上式可写成:

(1-14)推广到管路上任何一个截面,即:

(1-14a)式(1-14)、(1-14a)都称为管内稳定流动的连续性方程式。

它反映了在稳定流动系统中,流体流经各截面的质量流量不变时,管路各截面上流速的变化规律。

此规律与管路的安排以及管路上是否装有管件、阀门或输送设备等无关。

1.3.3连续性方程(Equationofcontinuity),1.3.3连续性方程(Equationofcontinuity),

(2)讨论对于不可压缩的流体即:

常数,可得到(1-15)(1-15a)(1-16),对于在圆管内作稳态流动的不可压缩流体:

(3)适用条件流体流动的连续性方程式仅适用于稳定流动时的连续性流体。

1.3.4总能量衡算方程式和柏努利方程式(ConservationofmechanicalenergyandBernoulliequation),柏努利方程式是流体流动中机械能守恒和转化原理的体现。

柏努利方程式的推导方法一般有两种

(1)理论解析法比较严格,较繁琐

(2)能量衡算法比较直观,较简单本节采用后者。

推导思路:

从解决流体输送问题的实际需要出发,采取逐渐简化的方法,即先进行流体系统的总能量衡算(包括热能和内能)流动系统的机械能衡算(消去热能和内能)不可压缩流体稳态流动的机械能衡算柏努利方程式。

1.3.4.1流动系统的总能量衡算(包括热能和内能),在图1-9所示的系统中,流体从截面1-1流入,从截面2-2流出。

管路上装有对流体作功的泵及向流体输入或从流体取出热量的换热器。

并假设:

(a)连续稳定流体;

(b)两截面间无旁路流体输入、输出;

(c)系统热损失QL=0。

图1-9流动系统的总能量衡算,衡算范围:

内壁面、1-1与2-2截面间。

衡算基准:

1kg流体。

基准水平面:

o-o平面。

u1、u2流体分别在截面1-1与2-2处的流速,m/s;

p1、p2流体分别在截面1-1与2-2处的压强,N/m;

Z、Z截面1-1与2-2的中心至o-o的垂直距离,m;

A1、A2截面1-1与2-2的面积,m2;

v1、v2流体分别在截面1-1与2-2处的比容,m3/kg;

1、2流体分别在截面1-1与2-2处的密度,kg/m3。

1.3.4.1流动系统的总能量衡算(包括热能和内能),表1-11kg流体进、出系统时输入和输出的能量,1.3.4.1流动系统的总能量衡算(包括热能和内能),根据能量守恒定律,连续稳定流动系统的能量衡算:

可列出以kg流体为基准的能量衡算式,即:

(1-17)此式中所包含的能量有两类:

机械能(位能、动能、静压能、外功也可归为此类),此类能量可以相互转化;

内能U和热Qe,它们不属于机械能,不能直接转变为用于输送流体的机械能。

为得到适用流体输送系统的机械能变化关系式,需将U和Qe消去。

1.3.4.1流动系统的总能量衡算(包括热能和内能),根据热力学第一定律:

(1-18)式中为1kg流体从截面1-1流到截面2-2体积膨胀功,J/kg;

Qe为1kg流体在截面1-1与2-2之间所获得的热,J/kg。

而Qe=Qe+hf其中Qe为1kg流体与环境(换热器)所交换的热;

hf是1kg流体在截面1-1与2-2间流动时,因克服流动阻力而损失的部分机械能,常称为能量损失,其单位为J/kg。

(有关问题后面再讲),1.3.4.2机械能衡算式(消去热能和内能),又因为故式(1-17)可整理成:

(1-19)式(1-19)是表示1kg流体稳定流动时的机械能衡算式,对可压缩流体与不可压缩流体均可适用。

式中一项对可压缩流体与不可压缩流体积分结果不同,下面重点讨论流体为不可压缩流体的情况,1.3.4.2机械能衡算式(消去热能和内能),

(1)不可压缩有粘性实际流体、有外功输入、稳态流动实际流体(粘性流体),流体流动时产生流动阻力;

不可压缩流体的比容v或密度为常数,故有该式是研究和解决不可压缩流体流动问题的最基本方程式,表明流动系统能量守恒,但机械能不守恒。

1.3.4.3不可压缩流体稳态流动的机械能衡算柏努利方程式,(1-20),以单位质量1kg流体为衡算基准,式(1-19)可改写成:

J/kg,

(1)不可压缩有粘性实际流体、无外功输入、稳态流动,以单位重量1N流体为衡算基准。

将式(1-20)各项除以g,则得:

(1-20a)式中为输送设备对流体1N所提供的有效压头,是输送机械重要的性能参数之一,为压头损失,Z、u2/2g、p/g分别称为位压头、动压头、静压头。

m,以单位体积1m3流体为衡算基准。

将式(1-20)各项乘以流体密度,则:

其中,为输送设备(风机)对流体1m3所提供的能量(全风压),是选择输送设备的(风机)重要的性能参数之一。

(1-21b),

(1)不可压缩有粘性实际流体、无外功输入、稳态流动,Pa,(1-20),

(2)不可压缩有粘性实际流体、无外功输入、稳态流动对于不可压缩流体、具粘性的实际流体,因其在流经管路时产生磨擦阻力,为克服磨擦阻力,流体需要消耗能量,因此,两截面处单位质量流体所具有的总机械能之差值即为单位质量流体流经该截面间克服磨擦阻力所消耗的能量。

1.3.4.3不可压缩流体稳态流动的机械能衡算柏努利方程式,J/kg,(1-21),(3)不可压缩不具有粘性的理想流体(或其摩擦损失小到可以忽略)、无外功输入、稳态流动理想流体(不具有粘性,假想流体)hf=0。

若又没有外功加入We=0时,式(1-21)便可简化为:

表明流动系统理想流体总机械能E(位能、动能、静压能之和)相等,且可相互转换。

(1-22),1.3.4.3不可压缩流体稳态流动的机械能衡算柏努利方程式,J/kg,当流体静止时,u=0;

hf=0;

也无需外功加入,即We=0,故可见,流体的静止状态只不过是流动状态的一种特殊形式。

(3)不可压缩流体、静止流体静力学基本方程式,J/kg,1.3.4.3不可压缩流体稳态流动的机械能衡算柏努利方程式,用简单的实验进一步说明。

当关闭阀时,所有测压内液柱高度是该测量点的压力头,它们均相等,且与1-1截面处于同一高度。

当流体流动时,若hf=0(流动阻力忽略不计),不同位置的液面高度有所降低,下降的高度是动压头的体现。

如图1-10中2-2平面所示。

1.3.4.4柏努利方程式实验演示,图1-10理想流体的能量分布,当有流体流动阻力时流动过程中总压头逐渐下降,如图1-11所示。

结论:

不论是理想流体还是实际流体,静止时,它们的总压头是完全相同。

流动时,实际流体各点的液柱高度都比理想流体对应点的低,其差额就是由于阻力而导致的压头损失。

实际流体流动系统机械能不守恒,但能量守恒。

图1-11实际流体的能量分布,1.3.4.4柏努利方程式实验演示,

(1)适用条件在衡算范围内是不可压缩、连续稳态流体,同时要注意是实际流体还是理想流体,有无外功加入的情况又不同。

(2)衡算基准,1.3.4.5柏努利方程的讨论及应用注意事项,J/kg,Pa,m,1kg1N1m3,表1-1柏努利方程的常用形式及其适用条件,1.3.4.5柏努利方程的讨论及应用注意事项,(3)式中各项能量所表示的意义上式中gZ、u2/2、p/是指在某截面上流体本身所具有的能量;

hf是指流体在两截面之间所消耗的能量;

We是输送设备对单位质量流体所作的有效功。

由We可计算有效功率Ne(J/s或W),即(1-23)ws为流体的质量流量。

1.3.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2