基于单片机的数控稳压电源设计.docx

上传人:b****6 文档编号:15756121 上传时间:2023-07-07 格式:DOCX 页数:42 大小:218.13KB
下载 相关 举报
基于单片机的数控稳压电源设计.docx_第1页
第1页 / 共42页
基于单片机的数控稳压电源设计.docx_第2页
第2页 / 共42页
基于单片机的数控稳压电源设计.docx_第3页
第3页 / 共42页
基于单片机的数控稳压电源设计.docx_第4页
第4页 / 共42页
基于单片机的数控稳压电源设计.docx_第5页
第5页 / 共42页
基于单片机的数控稳压电源设计.docx_第6页
第6页 / 共42页
基于单片机的数控稳压电源设计.docx_第7页
第7页 / 共42页
基于单片机的数控稳压电源设计.docx_第8页
第8页 / 共42页
基于单片机的数控稳压电源设计.docx_第9页
第9页 / 共42页
基于单片机的数控稳压电源设计.docx_第10页
第10页 / 共42页
基于单片机的数控稳压电源设计.docx_第11页
第11页 / 共42页
基于单片机的数控稳压电源设计.docx_第12页
第12页 / 共42页
基于单片机的数控稳压电源设计.docx_第13页
第13页 / 共42页
基于单片机的数控稳压电源设计.docx_第14页
第14页 / 共42页
基于单片机的数控稳压电源设计.docx_第15页
第15页 / 共42页
基于单片机的数控稳压电源设计.docx_第16页
第16页 / 共42页
基于单片机的数控稳压电源设计.docx_第17页
第17页 / 共42页
基于单片机的数控稳压电源设计.docx_第18页
第18页 / 共42页
基于单片机的数控稳压电源设计.docx_第19页
第19页 / 共42页
基于单片机的数控稳压电源设计.docx_第20页
第20页 / 共42页
亲,该文档总共42页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于单片机的数控稳压电源设计.docx

《基于单片机的数控稳压电源设计.docx》由会员分享,可在线阅读,更多相关《基于单片机的数控稳压电源设计.docx(42页珍藏版)》请在冰点文库上搜索。

基于单片机的数控稳压电源设计.docx

基于单片机的数控稳压电源设计

摘要

电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。

电力电子技术是电能的最佳应用技术之一。

当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。

随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。

该直流稳压电源的输入为交流22OV,50Hz,输出电压为1.26V—10V内连续可调,输出电流为500mA以上,并能够直观的显示输出电压。

电源的控制电路选用AT89S51单片机为核心,以及数/模转换功能,具有线路简单、稳定性好、显示清晰直观等特点。

文章中分析了电源的整体结构和工作原理,并详细的讲述了预稳压电路、数/模转换电路、显示电路等电路的工作原理。

给出了控制电路的硬件实现和主要的软件流程设计。

 

关键词:

单片机;数码管;数/模转换;稳压

Abstract

Digitallycontrolledpowersupplytechnology,especiallytechnologyisastrongpracticalengineeringtechnology,andservicetoallindustries.Powerelectronicstechnologyisthebestapplicationofenergytechnologies.Technologycombinesthepoweroftoday'selectrical,electronics,systemsintegration,controltheory,materials,andmanyothersubjectareas.Withthecomputerandcommunicationtechnologiesdevelopedfrommoderninformationtechnologyrevolution,tothepowerelectronicstechnologytoprovideabroaddevelopmentprospects,butalsotosetahigherpowersupplyrequirements.TheDCpowersupplyinputfortheexchangeof22OV,50Hz,outputvoltageof1.26V~10Vcontinuouslyadjustableoutputcurrentof500mAormoreandbeabletodisplayvisualoutputvoltage.PowersupplycontrolcircuituseAT89S51microcontrollerasthecore,aswellasD/Aconverterfunctions,withsimplecircuit,goodstability,showingaclearandintuitiveandsoon.Thearticleanalyzesthepoweroftheoverallstructureandworkingprincipleandindetailaboutthepre-regulatorcircuit,D/Aconvertercircuit,displaycircuitsothecircuitworks.Givesthecontrolcircuithardwareimplementationandthemainsoftwareflow.

 

Keywords:

SCM;digitalpipe;D/Aconverter;Regulators

 

 

第1章绪论

采用单片机的数字可调稳压电源价格低廉采用普遍使用的元件就能实现其功能,显示清晰直观,传统的模拟可调稳压电源没有读数,在读数过程中很不方便,并且长时间使用会造成输出电压不稳。

数字可调稳压电源则采用先进的数显技术,使测量结果一目了然,只要仪表不发生跳数现象,测量结果就是唯一的,不仅保证读数的客观性与准确性,还符合人们的读数习惯,能缩短读数和记录的时间。

模拟可调稳压电源大多是通过调节电位器的阻值改变输出直流电压,电位器特别容易磨损,使用一段时间后就会出现接触不良,引起输出电压不稳定。

数字可调稳压电源是通过接触按钮以步进方式选取不同的输出电压,再有数码管显示输出电压机器工作状态,工作稳定可靠。

采用单片机的数字可调稳压电源,它具有输出电压容易改变、价格低廉、显示清晰直观、准确度高、扩展能力强等特点。

1.1课题背景

电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。

当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。

直流稳压电源是电子技术常用的仪表设备之一,广泛的应用于教学、科研等领域,是电子实验员、电子设计人员及电路开发部门进行试验操作和科学研究不可缺少的电子仪器。

在电子电路中,通常都需要电压稳定的直流电源来供电。

而整个稳压过程是由电源变压器、整流、滤波、稳压等四部分组成。

然而这种传统的直流稳压电源功能简单、不好控制、可靠性低、干扰大、精度低、复杂度高。

普通的直流稳压电源品种有很多,但均存在一下二个问题:

输出电压是通过粗调(波段开关)及细调(电位器)来调节。

这样,当输出电压需要精确输出,或需要在一个小范围内改变时,困难就较大。

另外,随着使用时间的增加,波段开关及电位器难免接触不良,对输出会有影响。

稳压方式均是采用串联型稳压电路,对过载进行限流和截流保护,电路构成复杂,稳压精度也不高。

在家用电器和其他各类电子设备中,通常都需要电压稳定的直流电源供电。

但在实际生活中,都是由220V的交流电网供电。

这就需要通过变压、整流、滤波、稳压电路将交流电转换成稳定的直流电。

滤波器用于滤去整流输出电压中的纹波,一般传统电路由滤波扼流圈和电容器组成,若由晶体管滤波器来代替,则可缩小直流电源的体积减轻其重量,且晶体管滤波直流电源不需要直流稳压器就能用作家用电器的电源,就既降低了家用电器的成本,由缩小了其体积,使家用电器小型化。

传统的直流稳压电源通常采用电位器和波段开关来实现电压的调节,并由电压表指示电压值的大小。

因此,电压的调节精度不高,读数欠直观,电位器也易磨损。

而基于单片机控制的直流稳压电源就较好地解决以上传统稳压电源的不足。

数控稳压电源是电子行业发展的必然产物。

近年来,随着电子技术的发展可调稳压电源应用的越来越广泛。

目前,由各种单片机构成的数字稳压电源产品越来越多,已被广泛用于家庭电器、工业电器、军事电器等领域,显示出强大的生命力。

与此同时,由于它扩展能力很强,功能日趋完善而扩展到人们生活的各个方面。

1.2设计任务与技术要求

1.设计任务

单片机控制数字显示可调稳压电源

2.任务的技术要求

1).输出电压为(1.26~10)v

2).输出误差≤0.1v

3).额定输出电流≥500mA

 

第2章方案的论证与设计

2.1方案选择

数控稳压电源是电子设备的重要部分,其质量好坏直接影响着电子设备的可靠性,而且电子设备的故障60%来自电源。

因此电源越来越受到人们的重视。

电子电路及电子设备对电源最基本的要求就是电源的输出电压或输出电流要稳定。

通过查阅大量资料,显示电路和控制电路是本电路的核心部分,对它的选择有以下三种方案:

方案一:

采用模拟电路

采用模拟电路的可调稳压电路就是用一个多档开关来控制输出电压,而所谓的显示系统只是在多档开关的每个档的旁边注明电压值。

随着电子行业的发展,它不耐用的弊端已经使它逐渐离开历史的舞台。

方案二:

采用纯数字电路

纯数字电路的稳压电源避免了硬件之间的磨损,使得使用寿命大大提高,而且其输出电压也不会随时间产生误差。

但是它的电路较为复杂,制作时很困难,由于电路的复杂产生的问题也会很多。

方案三:

采用单片机的方法

采用单片机的数字稳压电源是将数字电路和单片机很好地结合在一起,不但能够达到数字电路的效果,而且能够大大地简化复杂的纯数字电路。

采用单片机后,还可以用软件实现保护功能,要扩展其他的功能也非常容易。

2.2方案的确定

经过全方位的对比,使电路的设计更加合理化,切合技术指标的标准,觉得使用方案三单片机的方法简洁、灵活、可扩展性好更加的适合这次的毕业设计,并能够达到指标要求。

2.3方框图的设计

经过对电路原理的分析,基本对电路有了一个大概的设计,如图2-1所示:

图2-1整机方框图

方框图的论述:

本电路通过按键设置数字电压值并且在数码管上显示,而设置的电压值通过单片机的P0口的8位数据线传输给D/A转换电路转换成模拟电压值,通过模拟放大器将电压放大后送给稳压电路最终输出。

各部分功能:

单片机:

只要是起到控制作用

显示电路:

用来显示预置电压

按键单元:

对预置电压的改变

D/A转换:

将数字电压转换成为模拟电压

控制电路:

对稳压电路起到了控制作用

稳压电路:

输出恒定的电压

本章小结

本章主要介绍了对该课题的分析论证和方案的确立,以及方框图的设计及原理的阐述,在下一章节当中,将对该课题中各单元电路的具体设计方案、元器件的选择作进一步论述。

第3章单元电路设计

3.1单片机电路设计

3.1.1AT89S51单片机

AT89S51是一个低功耗,高性能CMOS8位单片机,片内含4kBytesISP(In-systemprogrammable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISPFlash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。

AT89S51具有如下特点:

40个引脚,4kBytesFlash片内程序存储器,128bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。

此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。

空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。

同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适不同产品的要求的。

3.1.2AT89S51引脚功能

AT89S51单片机兼容MCS-51指令系统、4k可反复擦写(>1000次)ISPFlashROM、32个双向I/O口、4.5-5.5V工作电压、2个16位可编程定时/计数器、时钟频率0-33MHz、全双工UART串行中断口线、128x8bit内部RAM、2个外部中断源、低功耗空闲和省电模式、中断唤醒省电模式、3级加密位、看门狗(WDT)电路、软件设置空闲和省电功能、灵活的ISP字节和分页编程、双数据寄存器指针。

AT89S51引脚图如图3-1所示。

图3-1AT89S51引脚图

各个引脚功能:

VCC:

电源

GND:

P0口:

P0口是一个8位漏极开路的双向I/O口。

作为输出口,每位能驱动8个TTL逻辑电平。

对P0端口写“1”时,引脚用作高阻抗输入。

当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。

在这种模式下,P0具有内部上拉电阻。

在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。

程序校验时,需要外部上拉电阻。

P1口:

P1口是一个具有内部上拉电阻的8位双向I/O口,p1输出缓冲器能驱动4个TTL逻辑电平。

对P1端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。

作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。

此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX),具体如下表所示。

在flash编程和校验时,P1口接收低8位地址字节。

引脚号第二功能:

P1.0T2(定时器/计数器T2的外部计数输入),时钟输出

P1.1T2EX(定时器/计数器T2的捕捉/重载触发信号和方向控制)

P1.5MOSI(在系统编程用)

P1.6MISO(在系统编程用)

P1.7SCK(在系统编程用)

P2口:

P2口是一个具有内部上拉电阻的8位双向I/O口,P2输出缓冲器能驱动4个TTL逻辑电平。

对P2端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。

作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。

在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX@DPTR)时,P2口送出高八位地址。

在这种应用中,P2口使用很强的内部上拉发送1。

在使用8位地址(如MOVX@RI)访问外部数据存储器时,P2口输出P2锁存器的内容。

在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。

P3口:

P3口是一个具有内部上拉电阻的8位双向I/O口,p2输出缓冲器能驱动4个TTL逻辑电平。

对P3端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。

作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。

P3口亦作为AT89S51特殊功能(第二功能)使用,如下表所示。

在flash编程和校验时,P3口也接收一些控制信号。

P3引脚号第二功能:

P3.0RXD(串行输入)

P3.1TXD(串行输出)

P3.2INT0(外部中断0)

P3.3INT0(外部中断0)

P3.4T0(定时器0外部输入)

P3.5T1(定时器1外部输入)

P3.6WR(外部数据存储器写选通)

P3.7RD(外部数据存储器写选通)

RST:

复位输入。

晶振工作时,RST脚持续2个机器周期高电平将使单片机复位。

看门狗计时完成后,RST脚输出96个晶振周期的高电平。

特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。

DISRTO默认状态下,复位高电平有效。

ALE/PROG:

地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。

在flash编程时,此引脚(PROG)也用作编程输入脉冲。

在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。

然而,特别强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。

如果需要,通过将地址为8EH的SFR的第0位置“1”,ALE操作将无效。

这一位置“1”,ALE仅在执行MOVX或MOVC指令时有效。

否则,ALE将被微弱拉高。

这个ALE使能标志位(地址为8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。

PSEN:

外部程序存储器选通信号(PSEN)是外部程序存储器选通信号。

当AT89S51从外部程序存储器执行外部代码时,PSEN在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN将不被激活。

EA/VPP:

访问外部程序存储器控制信号。

为使能从0000H到FFFFH的外部程序存储器读取指令,EA必须接GND。

为了执行内部程序指令,EA应该接VCC。

在flash编程期间,EA也接收12伏VPP电压。

XTAL1:

振荡器反相放大器和内部时钟发生电路的输入端。

XTAL2:

振荡器反相放大器的输出端。

3.1.3单片机在电路中应用

3.1.3.1单片机在电路中引脚功能

单片机在电路中的引脚使用如图3-2所示。

P0口为8位数据传输口,XTAL1、XTAL2为单片机提供频率为12MHz的频率,P1口为显示电路提供段选数据,P3口的高四位为显示电路提供位选数据,RST是系统复位,P2口的高四位用来扫描按键电路是否有按键按下。

图3-2单片机应用电路

单片机的应用电路的主要作用是将按键电路的所预置的电压通过P1和P3口在显示电路中显示出来,并且将预置的电压通过单片机的P0口输出给数/模转换电路。

3.1.3.2时钟电路设计

时钟是单片机的心脏,各部分都以时钟频率为基准,有条不紊的一拍一拍的工作。

因此,时钟频率直接影响单片机的速度,时钟电路的质量也直接影响单片机系统的稳定性。

对于MCS-51系列的单片机,常用的时钟电路设计方式有内部时钟和外部时钟两种。

内部时钟电路设计如下:

利用AT89S51单片机内部一个高增益的反相放大器,把一个晶振体和两个电容器组成自激励振荡电路,接于XTAL1和XTAL2之间。

这样振荡器发出的脉冲直接送入内部时钟电路,如图3-3所示。

图3-3内部时钟电路

本系统中晶振体选石英晶体,振荡频率为12MHz,电容器为33PF电容。

3.1.3.3复位电路设计

单片机在启动或断电后,程序需要从头开始执行,机器内全部寄存器、I/O接口等都必须重新复位。

复位方式有自动复位和手动复位两种。

在AT89S51的ALE及

两引脚输出高电平,RST引脚高电平到时,单片机复位。

端的高电平直接由上电瞬间产生为上电复位,即自动复位;若通过按动按钮产生高电平复位,则称为手动复位。

系统复位电路如图3-4所示。

该复位电路在刚上电接通电源时,电容C相当于瞬间短路,+5V的高电平立刻加到了RST端,该高电平使AT89S51全机复位。

若运行过程中,需要程序从头执行,只需按动按钮即可。

按下A键,则直接把+5V高电平加到了

端,从而使其复位,这称为手动复位。

显然,该电路既可上电复位又可手动复位。

复位后,P0~P3四个并行接口全为高电平,其它寄存器全部清零,只有SBUF寄存器状态不确定。

图3-4系统复位电路

3.2数/模转换电路设计

3.2.1DAC0832芯片简介

DAC0832是8分辨率的D/A转换集成芯片,如图3-5所示。

与微处理器完全兼容。

这个DA芯片以其价格低廉、接口简单、转换控制容易等优点,在单片机应用系统中得到广泛的应用。

D/A转换器由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路构成。

图3-5DAC0832引脚功能

3.2.2DAC0832的主要特性参数

分辨率为8位;电流稳定时间1us;可单缓冲、双缓冲或直接数字输入;只需在满量程下调整其线性度;单一电源供电(+5V~+15V);低功耗,200mW。

3.2.3DAC0832结构

D0~D7:

8位数据输入线,TTL电平,有效时间应大于90ns(否则锁存器的数据会出错);

ILE:

数据锁存允许控制信号输入线,高电平有效;

CS:

片选信号输入线(选通数据锁存器),低电平有效;

WR1:

数据锁存器写选通输入线,负脉冲(脉宽应大于500ns)有效。

由ILE、CS、WR1的逻辑组合产生LE1,当LE1为高电平时,数据锁存器状态随输入数据线变换,LE1的负跳变时将输入数据锁存;

XFER:

数据传输控制信号输入线,低电平有效,负脉冲(脉宽应大于500ns)有效;

WR2:

DAC寄存器选通输入线,负脉冲(脉宽应大于500ns)有效。

由WR1、XFER的逻辑组合产生LE2,当LE2为高电平时,DAC寄存器的输出随寄存器的输入而变化,LE2的负跳变时将数据锁存器的内容打入DAC寄存器并开始D/A转换。

IOUT1:

电流输出端1,其值随DAC寄存器的内容线性变化;

IOUT2:

电流输出端2,其值与IOUT1值之和为一常数;

Rfb:

反馈信号输入线,改变Rfb端外接电阻值可调整转换满量程精度;

Vcc:

电源输入端,Vcc的范围为+5V~+15V;

VREF:

基准电压输入线,VREF的范围为-10V~+10V;

AGND:

模拟信号地

DGND:

数字信号地

3.2.4DAC0832的工作方式

根据对DAC0832的数据锁存器和DAC寄存器的不同的控制方式,DAC0832有三种工作方式:

直通方式、单缓冲方式和双缓冲方式。

3.2.5DAC0832在电路中的应用

DAC0832是8位全MOS中速D/A转换器,如图3-6所示。

采用R—2RT形电阻解码网络,转换结果为一对差动电流输出,转换时间大约为1us。

使用单电源+5V―+15V供电。

参考电压为-10V-+10V。

在此我们直接选择+5V作为参考电压。

DAC0832有三种工作方式:

直通方式,单缓冲方式,双缓冲方式;在此我们选择直通的工作方式,将XFER、WR2、CS管脚全部接数字地。

管脚8接参考电压,在此我们接的参考电压是+10V。

图3-6数/模转换电路

3.3放大电路设计

3.3.1LM324简介

LM324系列器件为价格便宜的带有真差动输入的四运算放大器。

如图3-7所示。

与单电源应用场合的标准运算放大器相比,它们有一些显著优点。

该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。

共模输入范围包括负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性。

每一组运算放大器有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

图3-7LM324外部引脚图

3.3.2LM324的特点

1.短跑保护输出

2.真差动输入级

3.可单电源工作:

3V-32V

4.低偏置电流:

最大100nA

5.每封装含四个运算放大器。

6.具有内部补偿的功能。

7.共模范围扩展到负电源

8.行业标准的引脚排列

9.输入端具有静电保护功能

图3-8放大电路

本单元只用到了LM324里面的2个运算放大器构成2级运放,主要是将数/模转换电路输出的电流转换成为电压,并用这个电压去控制稳压电路输出一个恒定的电压值。

3.4稳压电路设计

目前,集成稳压电源已经大量应用到电子系统中,使得整个电源部分工作更加可靠,体积大大减小,在电路图中用到了LM317、7805、7812、7912三端稳压器。

作为此电源设计不可缺少的一部分,因此,应该对其功能、结构、参数、性能、工作条件进行更的深入的了解。

这是一种很常用的稳压器,其外型不同于普通的小功率三极管如图所示3-9,317稳压块的输出电压变化范围是Vo=1.25V—37V(高输出电压的317稳压块如LM317HVA、LM317HVK等,其输出电压变化范围是Vo=1.25V—45V),所以R2/R1的比值范围只能是0—28.6。

317稳压块都有一个最小稳定工作电流,有的资料称为最小输出电流,也有的资料称为最小泄放电流。

最小稳定工作电流的值一般为1.5mA。

由于317稳压块的生产厂家不同、型号不同,其最小稳定工作电流也不相同,但一般不大于5mA。

当317稳压块的输出电流小于其最小稳定工作电流时,317稳压块就不能正常工作。

当317稳压块的输出电流大于其最小稳定工作电流时,317稳压块就可以输出稳定的直流电压。

其基准电压标准值为1.25V(最小为1.20V,最大为1.30V),ADJ端电流标准值为50μA,最大为100μA。

最小输出电流在输入输出压差为40V(极限值)时标准值为5mA,最大为10mA;最大输出电流在同样条件下标准值为0.8A,最小为0.15A。

其工作条件见表3-1。

稳压器在

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2