ansys模态分析详解.docx

上传人:b****6 文档编号:16213871 上传时间:2023-07-11 格式:DOCX 页数:63 大小:361.38KB
下载 相关 举报
ansys模态分析详解.docx_第1页
第1页 / 共63页
ansys模态分析详解.docx_第2页
第2页 / 共63页
ansys模态分析详解.docx_第3页
第3页 / 共63页
ansys模态分析详解.docx_第4页
第4页 / 共63页
ansys模态分析详解.docx_第5页
第5页 / 共63页
ansys模态分析详解.docx_第6页
第6页 / 共63页
ansys模态分析详解.docx_第7页
第7页 / 共63页
ansys模态分析详解.docx_第8页
第8页 / 共63页
ansys模态分析详解.docx_第9页
第9页 / 共63页
ansys模态分析详解.docx_第10页
第10页 / 共63页
ansys模态分析详解.docx_第11页
第11页 / 共63页
ansys模态分析详解.docx_第12页
第12页 / 共63页
ansys模态分析详解.docx_第13页
第13页 / 共63页
ansys模态分析详解.docx_第14页
第14页 / 共63页
ansys模态分析详解.docx_第15页
第15页 / 共63页
ansys模态分析详解.docx_第16页
第16页 / 共63页
ansys模态分析详解.docx_第17页
第17页 / 共63页
ansys模态分析详解.docx_第18页
第18页 / 共63页
ansys模态分析详解.docx_第19页
第19页 / 共63页
ansys模态分析详解.docx_第20页
第20页 / 共63页
亲,该文档总共63页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

ansys模态分析详解.docx

《ansys模态分析详解.docx》由会员分享,可在线阅读,更多相关《ansys模态分析详解.docx(63页珍藏版)》请在冰点文库上搜索。

ansys模态分析详解.docx

ansys模态分析详解

ANSYS动力学分析指南

作者:

安世亚太

第一章模态分析

§1.1模态分析的定义及其应用

模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力

学分析所必需的前期分析过程。

ANSYS勺模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS"品家族中的模态分析是一个线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、

PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。

阻尼法和QR阻尼法允许在结构中存在阻尼。

后面将详细介绍模态提取方法。

§1.2模态分析中用到的命令

模态分析使用所有其它分析类型相同的命令来建模和进行分析。

同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。

后面的“模态分析实例(命令流或批处理方式)”将给岀进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS寸)。

而“模态分析实例(GUI方式)”则给出了以从ANSYSGUI中选择菜单选项方式进行同一实例分析的步骤。

(要想了解如何使用命令和GUI选项建模,请参阅vvANSYSt

模与网格指南>>)。

《ANSYS命令参考手册>>中有更详细的按字母顺序列出的ANSY唏令说明。

§1.3模态提取方法

典型的无阻尼模态分析求解的基本方程是经典的特征值问题:

【閱佝}=才[“]{时

其中:

L;丨=刚度矩阵,

■^■1=第]阶模态的振型向量(特征向量)■':

=第:

阶模态的固有频率(j-.'是特征值)

有许多数值方法可用于求解上面的方程。

ANSYS提供了7种方法模态提取方法,下面分别进行讨论。

1.分块Lanczos法

2.子空间(Subspace)法

3.PowerDynamics法

4.缩减(Reduced/Householder)法

5.非对称(Unsymmetric)法

6.阻尼(Damp法(阻尼法求解的是另一个方程,参见<>中关于此法的详细信息)

7.QR阻尼法(QR阻尼法求解的是另一个方程,参见vvANSYS!

论手册>>中关于此法的详细信息)

注意一阻尼法和非对称法在ANSYS/Professional中不可用。

前四种方法(分块Lanczos法、子空间法、PowerDynamics法和缩减法)是最常用的模态提取方法。

下表比较了这四种模态提取方法,并分别对每一种方法进行了简要描述。

对称系统特征值求解法表

模态提取

适用范围

内存

要求

存贮

要求

缺省提取方法

分块

用于提取大模型的多阶模态(40阶以上)

建议在模型中包含形状较差的实体和壳单元时采用此

Lanczos

最适合于由壳或壳与实体组成的模型

速度快,但要求比子空间法内存多50%

用于提取大模型的少数阶模态(40阶以下)

子空间法

适合于较好的实体及壳单元组成的模型

可用内存有限时该法运行良好

用于提取大模型的少数阶模态(20阶以下)

Power

适合于100K以上自由度模型的特征值快速求解

Dynamics

对于网格较粗的模型只能得到频率近似值

复频情况时可能遗漏模态

缩减法

用于提取小到中等模型(小于10K自由度)的所有模态选取合适主自由度时可获取大模型的少数阶(40阶以

下)模态,此时频率计算的精度取决于主自由度的选取。

§1.3.1分块Lanczos法

分块Lanczos法特征值求解器是却省求解器,它采用Lanczos算法,是用一组向量来实现Lanczos递归计算。

这种方法和子空间法一样精确,但速度更快。

无论EQSLV命令指定过何种求解器进行求解,分

块Lanczos法都将自动采用稀疏矩阵方程求解器。

计算某系统特征值谱所包含一定范围的固有频率时,采用分块Lanczos法方法提取模态特别有效。

算时,求解从频率谱中间位置到高频端范围内的固有频率时的求解收敛速度和求解低阶频率时基本上一

样快。

因此,当采用频移频率(FREQB来提取从FREQ(起始频率)的n阶模态时,该法提取大于FREQB

的n阶模态和提取n阶低频模态的速度基本相同。

§1.3.2子空间法

矩阵,因此精度很高,但是计算速度比缩减法慢。

这种方法经常用于对计算精度要求高,但无法选

择主自由度(DOF的情形。

做模态分析时如果模型包含大量的约束方程,使用子空间法提取模态应当采用波前(front)求解器,

不要采用JCG求解器;或者是使用分块Lanczos法提取模态。

当你的分析中存在大量的约束方程时,如果采用JCG求解器组集内部单元刚度,致使计算要求有很大的内存才能进行下去。

§1.3.3PowerDynamics法

PowerDynamics法内部采用子空间迭代计算,但采用PCG迭代求解器。

这种方法明显地比子空间法和

分块Lanczos法快。

但是,如果模型中包含形状较差的单元或病态矩阵时可能出现不收敛问题。

该法特别适用于求解超大模型(大于100,000个自由度)的起始少数阶模态。

谱分析不要使用该方法提取模态。

PowerDynamics法不进行Sturm序列检查(即不检查模态遗漏问题),这可能影响有多个重复频率问题的解。

此法总是采用集中质量近似算法,即自动采用集中质量矩阵(LUMPMON。

注意一如果用PowerDynamics法求解含刚体运动的模型的模态,则一定要用RIGID命令或选择等效的GUI途径。

注意一(MainMenu>Solution>AnalysisOptions或MainMenu'Preprocessor>

-Loads->AnalysisOptions)。

§1.3.4缩减法

缩减法采用HBI算法(Householder-二分-逆迭代)来计算特征值和特征向量。

由于该方法采用一个较小的自由度子集即主自由度(DOF来计算,因此计算速度更快。

主自由度(DOF导致计算过程中会形成精确的1八丨矩阵和近似的Li矩阵(通常会有一些质量损失)。

因此,计算结果的精度将取决于质量阵|」了的近似程度,近似程度又取决于主自由度的数目和位置。

§1.3.5非对称法

 

体-结构耦合问题)。

此法采用Lanczos算法,如果系统是非保守的(例如轴安装在轴承上),这种算法将

解得复数特征值和特征向量。

特征值的实部表示固有频率,虚部是系统稳定性的量度一负值表示系统是

稳定的,而正值表示系统是不稳定的。

该方法不进行Sturm序列检查,因此有可能遗漏一些高频端模态。

§1.3.6阻尼法

阻尼法用于阻尼不能被忽略的问题,如转子动力学研究。

该法使用完整矩阵(

 

序列检查。

因此,有可能遗漏所提取频率的一些高频端模态。

§1.3.5.1阻尼法一特征值的实部和虚部

特征值的虚部二代表系统的稳态角频率。

特征值的实部二代表系统的稳定性。

如果.「小于零,系统的位移幅度将按EXP(r^)指数规律递减。

如果rj大于零,位移幅度将按指数规律递增。

(或者换句

话说,负的二表示按指数规律递减的稳定响应;正的「则表示按指数规律递增的不稳定响应。

)如果

不存在阻尼,特征值的实部将为零。

ANSYS艮告的特征值结果实际上是被除过的。

这样给出的频率是以Hz(周/秒)为单位的。

即:

报告的特征值虚部=二」〕:

1

报告的特征值实部

§1.3.5.2阻尼法一特征向量的实部和虚部

在有阻尼系统中,不同节点上的响应可能存在相位差。

对任何节点,幅值应是特征向量实部和虚部分量的矢量和。

§1.3.7QR阻尼法

QR阻尼法同时具有分块Lanczos法与复Hessenberg法的优点,最关键的思想是,以线性合并无阻尼

系统少量数目的特征向量近似表示前几阶复阻尼特征值。

采用实特征值求解(分块Lanczos法)无阻尼

振型之后,运动方程将转化到模态坐标系。

然后,采用QR阻尼法,一个相对较小的特征值问题就可以在

特征子空间中求解出来了。

该方法能够很好地求解大阻尼系统模态解,阻尼可以是任意阻尼类型,即无论是比例阻尼或非比例阻尼。

由于该方法的计算精度取决于提取的模态数目所以建议提取足够多的基频模态,特别是阻尼较大

的系统更应当如此,这样才能保证得到好的计算结果。

该方法不建议用于提取临界阻尼或过阻尼系统的模

态。

该方法输岀实部和虚部特征值(频率),但仅仅输岀实特征向量(模态振型)。

参见CE方法的详细内容,掌握使用QR阻尼法(MODOPT命令)处理约束方程(CE)的技术。

约束方程(CE)方法

Cekey

3

0,1

约束

方程

处理

方法

直接

消去法

拉格朗日乘子法

应用范围

模型中只有少量约束方程时使用。

例如,在一个100,000自由度

问题中,只有大约1,000个约束方程。

一旦约束方程太多,该方法需要的内存极高。

此时,建议使用拉格朗日乘子法(Cekey

=1或2)。

模型中存在大量约束方程时使用。

例如,在一个100,000自由度

问题中,具有1,000以上的约束方程。

特别注意,当使用CEINTF、CERIG或CYCSOL命令创建约束方程时,一条命令就可以生成多

个约束方程。

此时,建议使用拉格朗日乘子法。

Cekey=1:

"QuickSolution"是一个快速处理方法,占用

CPU时间接近于直接消去法。

但是,提取较高阶频率值一般是实

际值的1-2%。

当高阶频率比低阶频率高岀二次或更高次的数

量级时,就会出现这种误差。

Cekey=0:

"AccurateSolution"是一个严密精确的方法。

但是,占用CPU的时间大致是"QuickSolution"的两倍。

§1.4矩阵缩减技术和主自由度选择准则

下面介绍如何矩阵缩减技术以及选择主自由度(DOF的基本准则。

§1.4.1矩阵缩减技术

矩阵缩减是通过缩减模型矩阵的大小以实现快速、简便的分析过程的方法。

它主要用于动力学分析,

如模态分析、谐响应分析和瞬态动力学分析。

矩阵缩减也用于子结构分析中以生成超单元。

矩阵缩减允许按照静力学分析那样建立一个详细的模型,而仅将“有动力学特征”部分用于动力学

分析。

可以通过辨识定义为主自由度的关键自由度来选择模型的“有动力学特征”部分,但必须注意,主

自由度应足以描述系统的动力学行为。

ANSY程序根据主自由度(DOF来计算缩减矩阵和缩减自由度(DOF

解,然后通过执行扩展处理将解扩展到完整的自由度(DOF集上。

矩阵缩减的主要优点是,计算缩减解

可以大大节省CPU时间,大问题的动力学分析时更是如此。

ANSYS程序采用的矩阵缩减基础理论是Guyan缩减法计算缩减矩阵。

此法的一个关键假设是:

对于较低的频率,从自由度(被缩减掉的自由度(DOF)上的惯性力和从主自由度传递过来的弹性力相比是可

以忽略的。

因此,结构的总质量只分配到主自由度(DOF上。

最终结果是缩减的刚度矩阵是精确的,而

缩减的质量和阻尼矩阵是近似的。

关于如何计算缩减矩阵的详细内容参见vvANSYS!

论参考手册>>。

§1.4.2人工选择主自由度的准则

选择主自由度是缩减法分析中很重要的一步。

缩减质量矩阵的精度(求解精确)将取决于主自由度的

位置和数目。

对于给定的问题,可以选择多种不同的主自由度集,在所多种情形下都可以得到能够接受的结果。

用命令M和MGEF来选择主自由度,也可用TOTAL命令让程序在求解过程中选择主自由度。

建议两种

方式兼用:

自己选择少量主自由度,同时让ANSYS程序选择一些自由度。

这样,程序将弥补那些可能被遗

漏的模态。

下面是选择主自由度的基本准则:

1.主自由度的总数至少应是感兴趣的模态数的两倍。

2.把预计结构或部件要振动的方向选为主自由度。

3.

la)。

如果在一个方向上的运动会引起

lb)。

例如对于平板问题,应至少在法向上选择几个主自由度(见图另一个方向上的大运动时,应在两个方向上都选择主自由度(见图

图1(a)平板可能有的法向主自由度

(b)X方向运动引起Y方向运动

4.在相对较大的质量或较大转动惯量但相对较低刚度的位置选择主自由度(见图2)。

凸肩或“松散”

连接的结构是这种位置的实例。

相反地,不要选择质量相对较小或有较高刚度(如靠近约束处的自由度

(DOF)的位置作为主自由度。

 

图2应选择主自由度的位置:

(a)大转动惯量(b)大质量

5.如果最关注的是弯曲模态,则可以忽略转动和“拉伸”自由度。

6.如果要选的自由度属于一个耦合约束集,则只须选中耦合集中第一个(首要的)自由度。

7.在施加力或非零位移的位置选择主自由度。

8.对于轴对称壳模型(SHELL51或SHELL61,选择模型中的平行于或接近平行于中心线部分的所有节

点的全局UX自由度为主自由度,这样就可以避免主自由度间的振荡运动(见图3)。

如果运动基本上是

平行于中心线,这条建议可以放宽。

对于MODE2的轴对称周期单元,应将其UXUZ自由度都选择为主自由度。

线自番由觀由

图3在轴对称壳模型中选择主自由度

检查主自由度集的有效性的最好方法是用两倍(或一半)数目的主自由度再次进行分析然后比较结果。

另一种方法是观察在模态分析解中输岀的缩减质量分布。

缩减质量最起码在运动的主要方向上的分量应该占结构整个质量的10%^15%

§1.4.3程序选择主自由度的要点

如果让ANSYS!

序选择主自由度(命令[TOTAL]),选出的主自由度的分布将取决于求解时单元被处理的顺序。

例如,程序将按单元是从左到右还是从右到左被处理的而选择岀不同的主自由度集。

然而,这种差异通常在结果中只会产生无关紧要的差别。

对于有统一的大小和特征的网格(如平板),主自由度通常不会是统一的。

在这种情况下,应当用命令M和MGE人为地指定一些主自由度。

在质量分布不规则的结构中也应做同样的处理,因为程序选出的主自由度可能集中在高质量区。

§1.5模态分析过程

模态分析过程由四个主要步骤组成:

1.建模;

2.加载及求解;

3.扩展模态;

4.观察结果。

下面分别展开进行详细讨论:

§1.6建模

主要完成下列工作:

首先指定工作名和分析标题,然后在前处理器(PREP7中定义单元类型、单元

实常数、材料性质以及几何模型。

ANSYS勺《建模和网格指南》中对这些工作有更详细的说明。

注意以

下两点:

•在模态分析中只有线性行为是有效的。

如果指定了非线性单元,它们将被当作是线性的。

例如,

如果分析中包含了接触单元,则系统取其初始状态的刚度值并且不再改变此刚度值。

•材料性质可以是线性的,各向同性的或正交各向异性的,恒定的或和温度相关的。

在模态分析中

必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量)。

而非线性特性将被忽略。

§1.7加载及求解

置,

下一

主要完成下列工作:

首先定义分析类型、指定分析设置、定义载荷和边界条件和指定加载过程设然后进行固有频率的有限元求解。

在得到初始解后,再对模态进行扩展,以供查看。

扩展模态将在节“扩展模态”中进行详细说明。

§1.7.1进入ANSYS求解器

命令:

/SOLU

GUI:

MainMenu>Solution

§1.7.2指定分析类型和分析选项

ANSYS提供的用于模态分析的选项如下表所示,表中的每一个选项都将在随后详细解释。

分析类型和分析选项

Calculation

注意一选择模态分析时,求解菜单将显示与模态分析相关的菜单项。

求解菜单有两种可能的状态

“简洁式(abridged)”或者"展开式(unabridged)”,它总是与上一个ANSYS任务是的状态相同。

简洁式菜单仅仅包括模态分析有用的或建议的求解设置。

当显示的是简洁式求解菜单,如果想访

问其他求解设置(即,要用到的有效求解设置,但该分析类型又不会遇到),就从求界菜单中选择展

开式菜单项展开求解设置项。

详情参见《ANSYS基本分析指南》使用展开式求解菜单。

注意一在单点响应谱分析(SPOPT,SPRS和动力学设计分析方法(SPOPT,DDAM中,模态扩展

可以放在谱分析之后按MXPAN命令设置的重要性因子SIGNIF值有选择地进行。

如果准备在谱分析之后进行模态扩展,请在模态分析选项(MODOPT对话框中的设置模态扩展的选项(MXPAND处选NO。

§1.721选项:

NewAnalysis:

选择新分析。

注意一在模态分析中Restart(重启动)是无效的。

如果需要施加不同的边界条件,则须做一次新的分析或采用vvANSYS基本分析过程指南>>的第3章中描述的PartialSolution(部分求解)方法。

§1.7.2.2选项:

分析类型:

Modal[ANTYPE]

指定分析类型为模态分析。

§1.7.2.3选项:

ModalExtractionMethod[MODOPT]

指定提取模态的方法,选择7种提取方法中的一种。

对于大多数应用,选用分块Lanczos法、子空间

法、PowerDynamics法或缩减法。

非对称法、阻尼法和QR阻尼法适于特殊应用。

一旦选用某种模态提取方

法,ANSYS!

序自动选择对应的求解器。

注意一非对称法、阻尼法和QR阻尼法在ANSYS/Professional产品中无效。

§1.724选项:

NumberofModestoExtract[MODOPT]

除缩减法以外其他模态提取方法该选项都是必须设置的。

对于非对称法和阻尼法,应该应当提取比必要的阶数更多的模态以降低丢失模态的可能性,但需要花费更长的求解时间。

§1.725选项:

NumberofModestoExpand[MXPAND]

该选项只在采用缩减法、非对称法和阻尼法时要求设置。

如果想得到单元求解结果,则不论采用何种

模态提取方法都需要打开“Calcucateelemresults”项。

在用单点响应谱分析(SPOPT,SPR)和动力

学设计分析方法(SPOPTQDA)中,模态扩展可能要放在谱分析之后按命令MXPAN设置的重要性因子SIGNIF

数值有选择地进行。

如果要在谱分析后才进行模态扩展,则在模态分析选项(MODOPT对话框的模态扩展

(EXPAND选项处选NO

§1.7.2.6选项:

MassMatrixFormulation[LUMPM]

该选项用于指定质量矩阵计算方式:

缺省的质量矩阵(和单元类型有关,也称为一致质量矩阵)和集

中质量阵。

我们建议在大多数应用中采用缺省一致质量矩阵。

但对有些包含“薄膜”结构的问题,如细长梁或非常薄的壳,采用集中质量矩阵近似经常可产生较好的结果。

另外,用集中质量阵时求解时间短,需要的内存少。

§1.7.2.7选项:

PrestressEffectsCalculation[PSTRES]

该选项用于确定是否考虑预应力对结构振型的影响。

缺省分析过程不包括预应力效应,即结构是处于无应力状态。

在分析中希望包含预应力的影响,则必须首先进行静力学或瞬态分析生成单元文件,参见“有

预应力模态分析”。

如果预应力效果选项是打开的,同时要求当前及随后的求解过程中质量矩阵[LUMPM]

的设置应和静力分析中质量矩阵的设置必须一致。

注意一在有预应力的周期对称单元如PLANE25和SHELL61上只可以加轴对称载荷。

§1.7.2.8其它模态分析选项

完成了模态分析选项(ModalAnalysisOption)对话框中的选择后,单击0K接着弹出一个对应于于指定的模态提取方法的选项对话框,是以下选择域的组合:

-域:

FREQBFREQE

指定感兴趣的模态频率范围。

FREQE域指定第一频移点(低频)一特征值收敛最快的点。

在大多数情况下不需要设置这个域,其缺省值为-1。

-域:

PRMODE

输出的缩减模态数。

设置此选项后,在输出文件(Jobname.out)中会列出所设置数目的缩减振型。

该选项只对缩减法有效。

-域:

Nrmkey

关于振型归一化的设置。

有两种选择:

相对于质量矩阵[M]和单位化[I]。

如果在模态分析后进行谱分析或模态叠加法分析,则应该选择相对于质量阵[M]进行归一化处理。

为了在随后得到各阶模态的最大响应(模态响应),须用模态系数去乘振型。

实现的方法是用*GET命令(在谱分析完成后)查到模态系数并

在SET命令中将模态系数用做比例因子。

-域:

RIGID

设置提取对已知有刚体运动结构进行子空间迭代分析时的零频振型。

只适用于Subspace和

PowerDynamics法。

-域:

SUBOPT

指定多种子空间迭代选项。

详细情况参见《ANSYS命令参考手册>>。

只适用于Subspace和

PowerDynamics法。

-域:

CEkey

指定处理约束方程的方法。

可选用的方法:

Directeliminationmethod(直接消去法)、Lagrangemultiplier(quick)method(快速拉格朗日乘子法)、Lagrangemultiplier(accurate)method(精确拉格朗日乘子法)。

该选项只适用于分块Lanczos法。

(参见“循环对称结构的模态分析”部分的表8“CE处理法”。

§1.7.3定义主自由度

在模态分析中,有时需要指定主自由度,并且只适用于缩减法。

主自由度(M自由度(DOF)指能描

述结构动力学特性的“重要的”自由度。

主自由度(DOF选取的规则是选择至少是感兴趣的模态阶数的一倍数目的主自由度(DOF。

建议用命令[M,MGEN根据对结构的动力学特牲的了解定义尽可能多的M自由度

(DOF,并用命令[TOTAL]让程序按照刚度/质量比选取一些附加的主自由度。

用命令[MLIST]可以列出已

定义的M自由度(DOF,用命令[MDELE冋以删除无关的M自由度(DOF。

关于主自由度的更详细内容参见“矩阵缩减”部分。

命令:

M

GUI:

MainMenu>Solution>MasterDOFs>-UserSelected-Define

§1.7.4在模型上加载荷

在典型的模态分析中唯一有效的“载荷”是零位移约束。

(如果在某个自由度(DOF处指定了一个

非零位移约束,程序将以零位移约束替代在该自由度(DOF处的设置)。

可以施加除位移约束之外的其它

载荷,但它们将被忽略(见下面的说明)。

在未加约束的方向上,程序将解算刚体运动(零频)以及高阶

(非零频)自由体模态。

下表给岀了施加位移约束的命

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2