局部阴影遮挡条件下光伏组件输出特性的研究概论.docx

上传人:b****1 文档编号:1621617 上传时间:2023-05-01 格式:DOCX 页数:17 大小:446.70KB
下载 相关 举报
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第1页
第1页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第2页
第2页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第3页
第3页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第4页
第4页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第5页
第5页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第6页
第6页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第7页
第7页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第8页
第8页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第9页
第9页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第10页
第10页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第11页
第11页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第12页
第12页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第13页
第13页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第14页
第14页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第15页
第15页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第16页
第16页 / 共17页
局部阴影遮挡条件下光伏组件输出特性的研究概论.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

局部阴影遮挡条件下光伏组件输出特性的研究概论.docx

《局部阴影遮挡条件下光伏组件输出特性的研究概论.docx》由会员分享,可在线阅读,更多相关《局部阴影遮挡条件下光伏组件输出特性的研究概论.docx(17页珍藏版)》请在冰点文库上搜索。

局部阴影遮挡条件下光伏组件输出特性的研究概论.docx

局部阴影遮挡条件下光伏组件输出特性的研究概论

 

局部阴影遮挡条件下

光伏组件输出特性的探究

姓名:

黄旭波

柯小丽

专业班级:

2013级本硕实验班

学号:

5602213054

5603513037

指导老师:

周浪

摘要:

通过对光伏组件不同位置进行遮挡的实验,得到不同阴影条件下的I-V曲线,并对所得数据进行对比分析,探究阴影位置对输出功率的影响。

结果表明,阴影遮挡对光伏组件的影响与被遮挡的串联支路的个数有关,当遮挡一个串联支路时,功率损耗为35.5%;遮挡两个串联支路时,功率损耗为70.1%;遮挡三个串联支路时,功率损耗为97.3%。

关键词:

光伏电池、局部阴影、I-V曲线、串联单位、旁路二极管

 

TheexperimentontheproductivityofPVCellsWithPartialShading

ABSTRACT:

wegetcertainI-Vcurvesunderdifferentshadingconditionsthroughtheexperimentofcoveringdifferentpositionsofthesolarcells,thenweanalyzethedatatoexploretheimpacttheshadowcauses.TheresultshowsthatshadingeffectsonthePVmodulesrelatetothenumberofthebrancheswhicharecoveredbytheshadows.whenonebranchofthesolarcellsiscovered,thepowerlostwillbe35.5%,andiftwoorthreearecovered,thelostwillbe70.1%and97.3%.

KEYWORDS:

Photovoltaiccells;Partialocclusion;characteristiccurveofV—I;Bypassdiode

1.引言1

1.1问题提出1

1.2光伏电池的发电原理1

1.3光伏电池的等效电路模型3

1.4部分阴影遮挡下光伏组件输出特性的研究5

2.实验方法5

2.1多晶硅太阳能电池组件各参数6

2.2其它设备:

6

2.3光伏组件结构:

6

3.实验结果与分析8

3.1对光伏组件同一串联支路内的电池片进行遮挡研究8

3.2对光伏组件的多个串联支路进行遮挡研究10

4.评价与解释14

5.结论15

6.参考文献:

16

1.引言

1.1问题提出

光伏发电的能量来源是取之不尽,用之不竭的太阳光,利用太阳光的波粒二象性在半导体中产生电子迁移而发电,在太阳能光伏发电的过程中,不会产生任何污染物,不破坏生态环境,是一种清洁安全的能源,具有很大的发展前景。

目前,太阳能的利用和光伏电池的特性研究是2l世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。

光伏电池作为太阳能光伏发电系统的基本发电单元,极易受到树叶,灰尘等各种遮挡物的影响,而使电池特性变坏,能量输出能力降低,甚至形成热斑,损坏电池。

因此研究光伏电池板在阴影作用下的输出特性,尽可能地提高电池板的输出效率并减小遮挡物对电池板造成的损耗,对提高光伏系统效率具有重要意义。

就目前而言,人们做的探究一是仿真建模,二是实验室条件下做实验。

以往大家的实验都是做关于阴影面积的大小对光伏组件输出特性的影响而忽略了阴影位置的影响。

于是本文就针对不同位置的阴影对输出特性的影响进行了探究。

1.2光伏电池的发电原理

如果在纯净的硅晶体中掺入少量的5价杂质磷(或砷、锑等),由于磷原子具有5个价电子,所以1个磷原子同相邻的4个硅原子结成共价键时,还多余1个价电子,这个价电子很容易挣脱磷原子的吸引而变成自由电子。

所以一个掺入5价杂质的4价半导体就成了电子导电类型的半导体,也称为n型半导体。

在n型半导体中,除了由于掺入杂质而产生大量的自由电子以外还有由于热激发而产生的少量电子-空穴对。

同理,掺入3价杂质的4价半导体称为p型半导体。

若将p型半导体和n型半导体两者紧密结合,联成一体时,在靠近交界面附近的区域内,空穴要由浓度大的p区向浓度小的n区扩散,并与那里的电子复合、从而使n区出现一批带正电荷的掺入杂质的离子。

同时,p区内出现一批带负电荷的掺入杂质的离子。

扩散的结果是在交界面的两边形成一边带正电荷而另一边带负电荷的一层很薄的区域,称为空间电荷区,即p-n结。

在p-n结内由于两边分别积攒了负电荷和正电荷,会产生一个由n区指向p区的电场,称为内建电场(或势垒电场)。

在光照下,当光子能量大于半导体材料的禁带宽度时,具有足够能量的光子能够在P型硅和N型硅中使价电子激发出来,以致产生电子-空穴对。

并且,在内建电场作用下空穴由N极区往P极区移动,电子由P极区向N极区移动,从而在p-n结两侧形成了正负电荷的积累,形成与内建电场相反的光生电场。

这个电场除了部分抵消内建电场以外,还使p型区带正电,n型区带负电,因此产生了光生电动势。

如果在该光伏电池上接上负载,则被结分开的过剩载流子中就有一部分把能量消耗于降低p-n结的势垒,即用于建立工作电压Vm,而剩余部分的光生载流子则用来产生光生电流Im。

1.3光伏电池的等效电路模型

当光照恒定时,由于光生电流

不随光伏电池的工作状态而变化.因此在等效电路中可以看作是一个恒流源。

光伏电池的两端接入负载R后,光生电流流过负载,从而在负载的两端建立起端电压V。

负载端电压反作用于光伏电池的P—N结上,产生一股与光生电流方向相反的电流

此外,由于太阳能光伏电池板前后表面的电极以及材料本身所带有的电阻率,当工作电流流过板子时必然会引起电池板内部的串联损耗,故引入串联电阻

串联电阻越大,线路损失越大,光伏电池输出效率越低。

在实际的太阳能光伏电池中,一般串联电阻都比较小。

大都在

之间。

另外,由于制造工艺的因素,光伏电池的边缘和金属电极在制作时可能会产生微小的裂痕、划痕,从而会形成漏电而导致本来要流过负载的光生电流短路掉,因此引入一个并联电阻

来等效。

相对于串联电阻来说,并联电阻比较大,一般在1K欧以上,有时可忽略对电路的影响。

太阳能光伏电池的等效电路如图1所示。

由太阳能光伏电池等效电路可得出:

其中I—流过负载的电流;

一与日照强度成正比例的光生电流;

一流过二极管的电流;

广太阳能光伏电池的漏电极。

上式中,

—反向饱和电流(一般而言,其数量级为

);q——电子电荷(1.6x

C);K——玻耳兹曼常数(1.38x

);T一绝对温度(T=t+273K);n—PN结理想因子;

——光伏电池并联电阻;

——光伏电池串联电阻。

此外:

综上所述:

1.4部分阴影遮挡下光伏组件输出特性的研究

目前世界各地有不少人对阴影遮挡下光伏组件的输出特性进行过探究。

其中大致分几个方面:

遮挡率对输出特性的影响

阴影电池的个数对输出特性的影响

功率损耗随遮光比例的变化关系

2.实验方法

2.1多晶硅太阳能电池组件各参数

最大功率:

235W

开路电压:

37.60V

短路电流:

8.32A

最大功率点电压:

29.8V

最大功率点电流:

7.89A

2.2其它设备:

HTIV400测试仪,辐照计,导线,温度感应器,黑色遮光板

2.3光伏组件结构:

多晶硅太阳电池组件由60片156mm×156mm电池串联而成,接线盒设有3个旁通二极管,分别由20个电池片串联组成一个串联支路,组件结构如下图所示:

3.实验结果与分析

表1对光伏组件的每一列分别遮挡

3.1对光伏组件同一串联支路内的电池片进行遮挡研究

实验

编号

遮挡

第n列

温度

/℃

辐照度

/W/㎡

Voc

/V

Isc

/A

Pmax

/W

Pmax损

耗率

28

无遮挡

47.30

700.00

32.24

6.08

140.76

/

29

1

47.90

700.00

30.94

6.22

90.31

35.84%

30

2

48.20

707.00

30.80

6.30

90.18

35.93%

31

3

48.80

709.00

30.80

6.31

90.77

35.51%

32

4

48.90

713.00

30.67

6.32

90.38

35.79%

34

5

48.80

725.00

30.60

6.53

92.70

34.14%

35

6

49.70

721.00

30.67

6.58

92.22

34.48%

图1对光伏组件的每一列进行遮挡所得I-V曲线

对上述图表的输出功率及被遮挡时受到的影响率进行分析发现:

遮挡不同列时得到的I-V曲线基本重合,最大输出功率的损耗率也几乎相等,且平均值为35.5%,由此可得:

当遮挡面积相同时,无论阴影遮挡位于哪一列上,其所产生的影响是相同的。

即阴影部分的位置与输出功率受到的影响啊无关。

编号

遮挡数目

温度

/℃

温度

/℃

Voc

/V

Isc

/A

Pmax

/W

Pmax

损耗率

57

0

56.70

632.00

31.09

5.58

123.25

/

58

1个

57.00

634.00

30.94

5.75

80.11

35.00%

60

2个

57.00

632.00

30.83

5.72

79.78

35.27%

61

3个

57.00

627.00

30.67

6.68

78.94

35.95%

表2对光伏组件同一列内进行不同数目的电池片的遮挡

 

对表2进行分析得出:

即使被遮挡的电池片数目不同,即阴影遮挡的面积不同时,对最大输出功率产生的影响是相同的,且损耗率的平均值为35.40%。

由此可得:

阴影部分面积大小也与遮挡下光伏电池输出受到的影响无关。

 

3.2对光伏组件的多个串联支路进行遮挡研究

表3对光伏组件的每一行分别进行遮挡

实验编号

遮挡

第n行

温度

/℃

辐照度/w/

Voc

/V

Isc

/A

Pmax

/W

Pmax

损耗率

37

0

59.50

665.00

31.04

5.87

128.67

/

47

1

60.00

657.00

30.23

0.22

4.75

96.31%

46

2

60.30

656.00

30.16

0.18

3.73

97.10%

45

3

60.70

657.00

30.16

0.16

2.70

97.90%

44

4

59.90

659.00

30.11

0.17

3.38

97.37%

43

5

59.70

665.00

30.17

0.16

3.38

97.37%

42

6

59.50

662.00

30.21

0.17

3.56

97.23%

41

7

59.70

667.00

30.23

0.15

3.38

97.37%

40

8

59.80

667.00

30.19

0.16

2.96

97.70%

39

9

59.90

670.00

30.23

0.16

3.13

97.57%

38

10

59.80

669.00

30.30

0.23

5.19

95.97%

图2对光伏组件的每一行分别进行遮挡所得I-V曲线

对光伏组件的一整行进行遮挡时,对最大输出功率造成的损耗达到90%以上,且短路电流已降到几乎为零。

遮挡一整列时,有10个电池片处于阴影下,而遮挡一整行时,仅有六块电池片受到阴影遮挡,然而遮挡一整行时对光伏组件的影响却远大于前者。

又由于遮挡一列时所涉及到的串联之路仅有一个,而遮挡一整列时涉及到了全部的3个串联支路,由此可得:

阴影遮挡对光伏组件输出的影响与其所处的串联支路个数有关。

表4对光伏组件的两列进行遮挡

实验编号

遮挡第n列

温度/℃

辐照度/w/

Voc

/V

Isc

/A

Pmax

/W

Pmax

损耗率

37

0

59.50

665.00

31.04

5.87

128.67

/

50

1,2

60.40

652.00

28.39

5.94

81.81

36.42%

51

2,3

60.20

652.00

28.30

4.90

37.38

70.95%

52

3,4,

60.30

648.00

28.30

5.85

82.34

36.01%

53

4,5

58.80

648.00

28.39

5.00

38.31

70.23%

54

5,6

56.70

648.00

28.61

5.97

82.77

35.67%

图3对光伏组件的两列进行遮挡所得的I-V曲线图

表5在光伏组件最上端的不同位置遮挡两个电池片

实验编号为50,52,54组为被遮挡位置处于同一串联支路内时所得的数据,由图3可得,此时三组实验的输出功率是相同的,且平均最大功率的损耗率为36.03%。

而实验编号为52,53组为遮挡位置位于两个串联支路内时所得的数据,同样,这两组实验的输出功率也是相同的,且平均最大输出功率的损耗率为70.59%。

编号

遮挡电池片编号

温度/℃

辐照度/w/

Voc

/V

Isc

/A

Pmax

/W

Pmax损耗率

64

0

58.40

593.00

30.84

5.23

114.97

/

65

1,20

58.60

590.00

30.66

5.31

73.83

35.78%

66

20,21

58.70

588.00

30.64

4.71

34.34

70.13%

67

21,40

58.70

586.00

30.66

5.18

73.84

35.77%

68

40,41

58.40

585.00

30.66

4.76

34.96

69.59%

69

41,60

58.20

586.00

30.67

5.34

74.67

35.05%

表6在光伏组件中间的不同位置对两块电池片进行遮挡

编号

遮挡电池片编号

温度/℃

辐照度/w/

Voc

/V

Isc

/A

Pmax

/W

Pmax损耗率

70

0

58.30

585.00

30.89

5.20

114.09

/

80

5,16

58.50

557.00

30.59

4.78

70.53

38.18%

79

16,25

58.0

561.00

30.64

4.37

32.74

71.30%

67

25,36

58.70

586.00

30.66

5.18

73.84

35.27%

77

36,45

58.80

566.00

30.60

4.56

34.00

70.20%

76

45,56

59.00

569.00

30.62

4.89

72.39

36.55%

表7在光伏组件的最下端不同位置对两个电池片进行遮挡

编号

遮挡电池片编号

温度/℃

辐照度/w/

Voc

/V

Isc

/A

Pmax

/W

Pmax损耗率

70

0

58.30

585.00

30.89

5.20

114.09

/

71

10,11

58.40

588.00

30.67

5.27

73.60

35.49

72

11,30,

58.60

584.00

30.67

4.67

34.08

70.13

73

30,31,

58.80

580.00

30.64

5.22

73.49

35.59

68

31,50

58.40

585.00

30.66

4.76

34.96

69.36

75

50,51

59.00

578.00

30.67

5.22

73.25

35.79

编号65,67,69和80,67,76及71,73,75试验遮挡的两个电池片均位于同一串联支路内,且通过对这六组数据的分析可得最大功率的平均损耗率为35.94%。

编号66和68,79和77,72和68实验遮挡的两块电池片都位于两条串联支路,且最大功率的平均损耗率为70.12%。

由上述四组实验更进一步地说明了,当阴影遮挡涉及到的串联支路个数相同时,其产生的影响是相同的。

且涉及到的串联支路个数越多产生的影响越大。

4.评价与解释

当光伏组件内的一个或多个电池片受到阴影遮挡而无法正常工作成为负载后,由于旁路二极管的作用,一整条串联支路都会被旁路掉而无法正常发电。

因此,无论该支路中被遮挡的电池片有几个或位于何处,当一整条支路都被旁路掉时,它们产生的影响都是相同的。

然而,当遮挡涉及到不同的串联支路时,由于受到遮挡的支路个数不同,被旁路掉的支路个数也不同,因此对整个串联支路产生的影响也是大不相同的,且涉及到的串联支路个数越多产生的影响越大。

5.

结论

本文设计了太阳电池组件遮挡实验,并对组件性能进行实际测试。

在组件有旁通二极管的情况下,比较与分析了阴影位于不同位置时对组件输出功率的影响。

并得出了一些结论:

阴影遮挡对每一个串联支路产生的影响效果是一样的。

当遮挡位于同一串联支路内时,阴影部分的面积大小和位置与光伏组件输出受到的影响无关。

不同个数的串联支路受到阴影遮挡时,对光伏组件产生的影响是大不相同的:

当被遮挡的部分涉及到一个串联支路时,功率的损耗约为35.5%;

当被遮挡的部分涉及到两个串联支路时,功率的损耗约为70.1%;

当被遮挡的部分涉及到三个串联支路时,功率的损耗约为97.3%。

④当串联组件采用全部串联的方式连接时,每一串联支路内的任意一个电池片受到遮挡都会对整个组件产生很大的影响,因此,在实际应用中,我们可以采用串并联方式相结合的办法来减小这种影响

6.参考文献:

[1]云志刚,杨宏,李文滋.光伏组件中电池遮挡与Ⅰ-V曲线特性变化关系[A].中国太阳能学会光伏专业委员会、广东省太阳能协会.第八届全国光伏会议暨中日光伏论坛论文集[C].中国太阳能学会光伏专业委员会、广东省太阳能协会:

2004:

4.

[2]李国良,李明,王六玲,项明,黄波,郑土逢,魏生贤,王云峰.阴影遮挡下空间太阳电池串联组件输出特性分析[J].光学学报,2011,01:

236-241.

[3]张臻,沈辉,李达.局部阴影遮挡的太阳电池组件输出特性实验研究[J].太阳能学报,2012,01:

5-12.

[4]周俊冬,马明.局部阴影条件下光伏电池输出特性实验研究[J].科技信息,2010,31:

51-52.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2