哈工大无线定位原理与技术试验报告讲解.docx

上传人:b****7 文档编号:16285562 上传时间:2023-07-12 格式:DOCX 页数:26 大小:2.06MB
下载 相关 举报
哈工大无线定位原理与技术试验报告讲解.docx_第1页
第1页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第2页
第2页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第3页
第3页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第4页
第4页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第5页
第5页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第6页
第6页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第7页
第7页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第8页
第8页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第9页
第9页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第10页
第10页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第11页
第11页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第12页
第12页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第13页
第13页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第14页
第14页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第15页
第15页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第16页
第16页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第17页
第17页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第18页
第18页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第19页
第19页 / 共26页
哈工大无线定位原理与技术试验报告讲解.docx_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

哈工大无线定位原理与技术试验报告讲解.docx

《哈工大无线定位原理与技术试验报告讲解.docx》由会员分享,可在线阅读,更多相关《哈工大无线定位原理与技术试验报告讲解.docx(26页珍藏版)》请在冰点文库上搜索。

哈工大无线定位原理与技术试验报告讲解.docx

哈工大无线定位原理与技术试验报告讲解

无线电定位原理与技术

实验报告

课程名称:

无线电定位原理与应用院系:

电子工程系班级:

1305203姓名:

黄晓明、大头光学号:

指导教师:

张云

实验时间:

12周周二,13周周二

实验成绩:

电信学院

实验一调频法测距实验

2.1实验要求

1.掌握调频法测距原理

2.利用给定的仿真信号通过MATLAB编程计算线性调频信号的参数(带宽,中心频率,时宽,调频斜率)并计算目标的距离。

反射回波相对于发射的线性调频信号产生了固定时延或固定频差F。

假设目标处于静止状态,总的频偏F为

F2R

根据该式可以反推出距离R。

 

图1线性调频信号与反射回波时域图

G伽12◎一歹@z3砂teK丄田一口冏一・Q

O

03

蒲燉/Hz

02

01L

幅度

归一化幅度

x岂

O

O

LM

OO

—0

0

S«/H村

 

根据公式

cFRcF(2.2)

2解得R=750m,与5us延迟一致。

积化和差公式:

1

coscos[cos()cos()](2.3)

2

实验二连续波雷达测速实验

3.1实验要求

1.掌握雷达测速原理。

2.了解连续波雷达测速实验仪器原理及使用。

3.采集运动物体回波数据,并在PC机使用Matlab对实验数据进行分析

4.使用Matlab对实验数据进行分析,得到回波多普勒频率和目标速度。

 

3.2

雷达测速原理

图3-1多普勒效应

cv0c2vf0(如果

3.2

连续波雷达测速实验仪器

图3-2连续波雷达测速实验仪器原理框图

PC机

 

 

 

图3-3连续波雷达内部原理图

图3-4测速雷达与采集板

3.3IQ正交双通道

图3-5IQ正交双通道处理

 

积化和差公式如下:

1

cossin[sin()sin()]

12(3.1)

coscos[cos()cos()]

2

所以信号格式

signalsignal(I)jsignal(Q)(3.2)

I路信号相位领先Q路信号π/。

2测速雷达给出的数据为混频后的多普勒频率I,Q双通道数据。

利用复信号傅里叶变换可以得到单边的频谱。

并通过多普勒频率的计算公式逆推出物体的运动速度。

3.4实验过程

1.采集了一组数据,采样频率为2048Hz。

2.从数据中选取波形较好的512点,做出时域波形与频谱,并求出目标速度其中,雷达发射波频率为24.15GHz。

信号采集界面如下:

图3-6雷达数据采集界面

选取一段回波进行matlab数据分析:

图1

图2

8

 

 

图3

图4

9

 

 

 

3.5实验代码

a=importdata('HXM.txt');

I=a(1:

512,1);

Q=a(1:

512,2);figure

(1);

plot(0:

1/2048:

511/2048,I);title('I路信号');xlabel('时间/s');ylabel('幅度');

figure

(2);plot(0:

1/2048:

511/2048,Q);

title('Q路信号');xlabel('时间/s');ylabel('幅度');

S=I-j*Q;b=fft(S);b

(1)=0;c=abs(fftshift(b));

[value,position]=max(c)d=c/value;

figure(3);plot(-1024:

2048/512:

1024-4,d);title('雷达测速数据处理结果');xlabel('频率/Hz');

ylabel('归一化幅度');f=-52

lan=3*10^8/(24.15*10^9)v=f*lan/2

3.5实验结果

%分别从a中取出第一列和第二列数据

%采样频率为2048Hz,取512个点

%由此确定横轴坐标以及间隔

%因为存在直流分量,所以要将零频处的

%值置零

%进行归一化

%由归一化幅度图中得到多普勒频率,利

%用公式求解速度,速度为负说明采用

%的数据段是手离开雷达时测得的数据

雷达载波波长:

多普勒频率:

速度:

10

 

利用雷达测得的数据共有两列,一列作为I路数据,见图2,一列

作为Q路数据,见图1。

对这两列数据表示成的复信号做傅里叶变换,所得的结果在零频处有一个冲激,如图3。

因为信号的均值不为零,存在直流分量。

因此要去掉直流分量,令信号的频谱在该处为零即可。

然后进行归一化,得到归一化幅度图,见图4。

利用光标取得多普勒频率为-52Hz,由相关公式求解得到速度为0.3230m/s,负号代表测速时手正在离开雷达。

11

实验三线调频信号及匹配滤波仿真实验

3.1实验要求自己设计系统函数对给定的信号进行匹配滤波信号频率:

0-10Mhz;信号时长:

10us采样率:

40Mhz复线性调频信号格式:

exp(1j*2*pi*(f0*t+0.5*k*t.^2));k为调频斜率f0为起始频率。

a.根据上文给定的信号参数自行构造和系统响应函数

b.画出参考函数频谱。

c.画出匹配滤波后时域图像,分析脉冲位置与系统函数t0的关系

d.标出时域图像的主旁瓣比。

3.1.1实验原理

线调频信号谱分析

线调频(LFM)信号时域表达式:

tkt2

s(t)Arect()cos(0t)

式中:

rect(t)是矩形函数,k是调频斜率,并且与调制频偏的关系是:

T

2f

k

TT

T为时域波形宽度,简称时宽;B2f为调频范围。

简称频宽

DBT为时宽带宽积,是线性调频信号一个很重要的参数。

LFM信号的频谱近似为:

 

近似程度取决于时宽带宽积D,D越大,近似程度越高,即频谱越接近于矩形

线调频信号匹配滤波

雷达发射LFM脉冲信号,固定目标的回波时域表示:

ttk(tt)2si(t)Arect(tTtr)cos(0(ttr)k(t2tr))

对应的匹配滤波器的传输函数近似(大时宽带宽积下)为:

12

匹配滤波器输出:

S0Si()H()exp(jtd)A2kejtd

代入相关参数,2B,k2BT,02f0匹配滤波器时域输出:

1jt

So(t)So()ejtd

2

ADsin[B(ttd)]ei2f0(ttd)

B(ttd)

4dB

时宽带宽积:

DBT

匹配滤波器的包络输出如下图4-3所示,所示,通常规定顶点下降到-

1T

处的宽度为输出脉冲的脉宽T0,并且有T01,所以脉冲压缩比:

TBTD

BT0

3.1.2实验过程根据实验原理编写频域系统函数,导入参考信号并进行离散傅里叶变换,利用时域卷积定理将频域信号与系统函数相乘在进行傅里叶逆变换,从而得到匹配滤波之后的时域信号。

代码如下:

f1=load('C:

\Users\Lenovo\Desktop\EXPERIMENT_3_DATA.txt');f11=f1(:

1);

f12=f1(:

2);

f=f11+j*f12;

B=10000000;

T=0.00001;

k=B/T;

fs=40000000;

N=fs*T;

f0=0;

n=0:

N-1;

t=n/fs;

h=exp(1j*2*pi*(f0*t+0.5*k*t.^2));

H=abs(fftshift(fft(h)));

F=abs(fftshift(fft(f)));

F=F.';

G=F.*H

figure

(1);plot(n*fs/N,G);

title('输出信号频谱');

figure

(2);

13g=abs(ifftshift(ifft(G,N)));value=max(g);g=g/value;gx=20*log10(g);plot(t,gx);

title('输出时域波形');

figure(3);

subplot(211);

plot(t,h);

title('系统函数时域波形');

subplot(212);

plot(n*fs,H);

title('系统函数频谱');

3.1.3实验结果

图3-1

14

LO

00H

coo®

 

 

3.1.4实验分析

1、根据实验原理中给出的系统函数可以知道输出频谱函数如下

S0Si()H()expj(td)

由此可知错误!

未找到引用源。

变化会引起输出信号脉冲位置的平移

2、分析主旁瓣比:

图3-4

主旁瓣比=错误!

未找到引用源

3.2实验要求

a.画出给定信号的时域图像,分析信号频谱。

b.利用给定的信号数据得到系统响应函数,并画出参考函数频谱。

c.画出匹配滤波后时域图像,分析脉冲位置与系统函数t0的关系

d.标出时域图像的主旁瓣比。

3.2.1实验原理

实际处理雷达系统中,为了压低副瓣,通常是将匹配函数加窗,然后加零延伸为TTp的时间长度,作傅立叶变换后并作共轭,和接收信号的傅立叶变换相乘后,作傅立叶逆变换,取前T时间段的有效数据段。

为了便于采用快速傅立叶变换,可能对匹配函数要补更多的零,对接收信号也要补零。

脉压处理过程

16

的如图3-4所示,其中虚框部分可事先计算好,以减小运算量

接收信号

3.2.2实验过程导入回波信号,对回波信号进行时域翻折得到参考信号。

由傅里叶变换性质可知,频域共轭相乘等价于时域共轭卷积,故对两时域信号进行共轭周期卷积(离散傅里叶变换对应循环卷积,截断之后即为单个周期的周期卷积)。

代码如下:

f1=load('C:

\Users\Lenovo\Desktop\EXPERIMENT_3_DATA.txt');

f11=f1(:

1).';

f12=f1(:

2).';

fa=f11+j*f12;

form=1:

400fb(400-m+1)=f11(m)-j*f12(m);

end

fs=40000000;

T=1/fs;

N=400;

fre=fs/N;n=1:

799;

fc=conv(fa,fb);value=max(fc);fc=fc/value;fcx=20*log10(fc);Fc=abs(fftshift(fft(fc)));figure

(1);plot(n*T,fcx);

title('输出时域波形');figure

(2);plot(n*fre,Fc);

title('输出频域波形');

17

m=1:

400

Fa=abs(fftshift(fft(fa)));

Fb=abs(fftshift(fft(fb)));figure(3);

subplot(211);plot(m*T,fa);

title('输入信号时域波形');subplot(212);plot(m*fre,Fa);

title('输入信号频域波形');figure(4);

subplot(211);plot(m*T,fb);

title('参考信号时域波形');subplot(212);plot(m*fre,Fb);

title('参考信号频域波形');

3.2.3实验结果

图3-5

18

图3-6

图3-7

19

 

图3-8

3.2.4实验分析

1、从匹配滤波过程可以看出,系统函数就是参考函数,即回波函数的共轭平移所得,并且由系统函数与回波信号时域卷积可知滤波输出信号是输入信号的自相关函数平移得到:

由此可知错误!

未找到引用源。

变化会引起输出信号脉冲位置的平移

2、主旁瓣比分析:

20

图3-9

主旁瓣比=错误!

未找到引用源。

21

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2