DS18B20的功能概述.docx

上传人:b****7 文档编号:16300983 上传时间:2023-07-12 格式:DOCX 页数:6 大小:77.46KB
下载 相关 举报
DS18B20的功能概述.docx_第1页
第1页 / 共6页
DS18B20的功能概述.docx_第2页
第2页 / 共6页
DS18B20的功能概述.docx_第3页
第3页 / 共6页
DS18B20的功能概述.docx_第4页
第4页 / 共6页
DS18B20的功能概述.docx_第5页
第5页 / 共6页
DS18B20的功能概述.docx_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

DS18B20的功能概述.docx

《DS18B20的功能概述.docx》由会员分享,可在线阅读,更多相关《DS18B20的功能概述.docx(6页珍藏版)》请在冰点文库上搜索。

DS18B20的功能概述.docx

DS18B20的功能概述

DS18B20的功能简介

制作人:

邱雨庄问曾雨桐徐洪

1、DS18B20的简介

(1)独特的单线接口方式:

DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(2)在使用中不需要任何外围元件。

   (3)可用数据线供电,电压范围:

+3.0~+5.5V。

   (4)测温范围:

-55~+125℃。

固有测温分辨率为0.5℃。

   (5)通过编程可实现9~12位的数字读数方式。

   (6)用户可自设定非易失性的报警上下限值。

   (7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。

   (8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

2、DS18B20的外形和内部结构

DS18B20内部结构主要由4部分组成:

64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

(1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。

64位光刻ROM的排列是:

开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。

光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

   

(2) DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:

用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

表 2-12-4-3DS18B20温度值格式表

 

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。

表 2-12-4-4DS18B20温度数据表

(3)DS18B20温度传感器的存储器

DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。

(4)配置寄存器

该字节各位的意义如下:

表 2-12-4-5配置寄存器结构

TM

R1

R0

1

1

1

1

1

     低五位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。

在DS18B20出厂时该位被设置为0,用户不要去改动。

R1和R0用来设置分辨率,如下表所示:

(DS18B20出厂时被设置为12位)

分辨率设置表:

 

表 2-12-4-6温度值分辨率设置表

R1

R0

分辨率

温度最大转换时间

0

0

9位

93.75ms

0

1

10位

187.5ms

1

0

11位

375ms

1

1

12位

750ms

DS18B20的工作原理

 3、DS18B20工作原理

  DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。

DS18B20测温原理如图3所示。

图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。

高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。

计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

  图3:

DS18B20测温原理框图

  

4、DS18B20与单片机的典型接口设计

以MCS-51单片机为例,图3中采用寄生电源供电方式,P1.1口接单线总线为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET

管和89C51的P1.0来完成对总线的上拉。

当DS18B29处于写存储器和温度A/D变换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。

采用寄生电源供电方式时VDD和GND端均接地。

由于单线只有一根线,因此发送接口必须是三态的。

主机控制DS18B20完成温度转换必须经过三个步骤:

初始化、ROM操作指令、存储器操作指令。

假设单片机系统所用的晶体管晶振频率为12MHZ,根据DS18B20的初始化时序、写时序和读时序,分别编写三个子程序:

INTI为初始化子程序,WRITE为写子程序,READ为

读子程序,所有的数据读写均由最低位开始,实际在实验中不用这种方式,只要在数据线上加一个上拉电阻4.7K,另外两个引脚分别接电源和地。

5、DS1820使用中注意事项

  DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:

  较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。

在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。

  在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个DS1820,在实际应用中并非如此。

当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。

  连接DS1820的总线电缆是有长度限制的。

试验中,当采用普通信号电缆传输长度超过50m时,读取的测温数据将发生错误。

当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通讯距离进一步加长。

这种情况主要是由总线分布电容使信号波形产生畸变造成的。

因此,在用DS1820进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。

 在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦某个DS1820接触不好或断线,当程序读该DS1820时,将没有返回信号,程序进入死循环。

这一点在进行DS1820硬件连接和软件设计时也要给予一定的重视。

测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2