外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx

上传人:b****6 文档编号:16640109 上传时间:2023-07-15 格式:DOCX 页数:19 大小:278.35KB
下载 相关 举报
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第1页
第1页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第2页
第2页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第3页
第3页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第4页
第4页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第5页
第5页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第6页
第6页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第7页
第7页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第8页
第8页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第9页
第9页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第10页
第10页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第11页
第11页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第12页
第12页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第13页
第13页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第14页
第14页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第15页
第15页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第16页
第16页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第17页
第17页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第18页
第18页 / 共19页
外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx

《外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx》由会员分享,可在线阅读,更多相关《外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx(19页珍藏版)》请在冰点文库上搜索。

外文翻译轴流管壳式换热器壳侧流体进 出口分布挡板的理论研究.docx

外文翻译轴流管壳式换热器壳侧流体进出口分布挡板的理论研究

外文翻译---轴流管壳式换热器壳侧流体进出口分布挡板的理论研究

外文翻译

THEORETICALINVESTIGATIONOFFLUIDDISTRIBUTORIN

THEINLET/OUTLETREGIONOFSHELL-SIDEOFSHELL-AND-TUBEHEATEXCHANGERWITHLONGITUDINALFLOW

ZENGWen-Liang1,2,HUXian-ping1,DENGXian-h1

(1.TheKeyLab.ofEnhancedHeatTransfer&EnergyConservationoftheMinistryofEducation,SouthChinaUniversityofTechnology,Guangzhou510640,China;2.TheChemistryandMaterialsDepartment,HengyangNormalUniversity,Hengyang 421001,China)

Abstract:

Presentsthetheoreticalinvestigationoffluiddistributorintheregionofinlet/outletofshell-sideofshell-and-tubeheatexchangerwithlongitudinalflowinthispaper.Itisadvancedthestructuraloptimalmathematicalmodelamongthevariousstructuralparametersofshell-sideofheatexchanger.Themodelprovidesreferenceanddirectionnotonlyforexperimentalandnumericalinvestigationofthisproblem,butalsofortheotherprocesswithfluiddistribution.

Keywords:

shell-and-tubeheatexchanger;longitudinalflow;fluiddistribution;structuraloptimization;theoreticalmodel

CLCNumber:

TQ051.5    DocumentCode:

A

0 Introduction

Becauseofsuchadvantagesaslowerpressuredropofshell-side,largerlogarithmicmeantemperaturedifference(LMTD),eliminatingvibrationofheat-transfertubes,andbetteroverallheattransferperformance,shell-and-tubeheatexchangerswithaxialflowhavebecomemorepopularinvariousareasofindustrialprocesscomparingwithshell-and-tubeheatexchangerswithsegmentbaffles.Withthescaleofindustrialproductiondevicesbecomelagerandlarger,heatexchangerasatypeofuniversalequipmentinindustrialprocessalsoneedtosatisfytherequirementofindustrialprocess,andtheheattransfercapabilityofheatexchangerbecamelargerandlarger.Becausethelengthoftubeofshell-and-tubeheatexchangerisdecidedbyprocessingtechnologycondition,itisnecessarytoenlargethediameterofshell-sideinordertoenlargetheheattransfercapability.Withtheincreasingofdiameterofheatexchangeranddecreasingoftheratiooflengthanddiameter(L/D),shell-sidefluidflowmaldistributionbecamemorebadlyandpressuredropofshell-sideincreasedmorequickly,itisnotonlyreducetheoverallheattransferperformanceofheatexchangerbutalsoinducevibrationofheat-transfertubes.TheseareprovedbyZHOUSen-quan[1],ChiouJ.P[2],UlrichMohrandHorstGelbe[3].Inordertomakefluidflowhomo-distribution,constructingafluidflowdistributorandsettingitintheregionofinletoroutletofequipmenthavebeencarriedoutbyS.S.Mousavi,K.Hooman[4]andL.Maharaj,J.Pocock,B.K.Loveday[5].Butthereisnoanyreportoffluidflowdistributorabouttheshell-sideofshell-and-tubeheatexchangerwithaxialflow,especiallythelarge-scaleandsuper-largescaleheatexchanger.Settingfluiddistributoralsohasadvantageanddisadvantageatthesametime.Ononehandshell-sidefluidflowmaldistributioncanbeimprovedquickly,ontheotherhandpressuredropofshell-sidebeincreasedquicklyatsametime.Soitisveryimportanttodevelopthetheoretical,numerical,andexperimentalinvestigationoffluidflowdistributorofshell-and-tubeheatexchanger.Thepurposeofthisresearchprogramistooptimizestructuralparameterofheatexchanger,toimproveshell-sidefluidflowmaldistribution,toreduceshell-side-pressuredrop,andtoenhanceoverallheattransferperformance,bytheoretical,numerical,andexperimentalinvestigationmethodsrespectively.Inthispaper,itwillintroduceoptimalmathematicalmodelamongthevariousstructuralparametersofheatexchangerbytheoreticalmethods.

1 PhysicalModel

Theoverallshell-sidestructuraldrawingandthepositionoffluidflowdistributorofshell-and-tubeheatexchangerwithaxialflowareshownasFig.1(a).Fig.1(b)isthesketchmapofshell-sideflowdistributorstructure.Infact,itiseasilytounderstandthefluiddistributorstructureasthatisaspecifiedpunchedratioboardpunchedmanymini-ostiolesonitfromtheFig.1(b).Thepurposeoftheoreticalinvestigationistofoundamathematicalmodelwhichbringsouttheoptimalpunchedratioofdistributorasafunctionofparameterofheatexchanger.Themainaspectsaffectingthefluidflowdistributionofshellsideareshownasfollows:

(1)punchedratioofdistributor;

(2)rowsofcrossingtubes;(3)arrangementstyleoftubes;(4)tubepitch;(5)tubeouterdiameter.

 Fig.1 Schematicdrawingofshellsideconfigurationofshellandtube

heatexchangerswithaxialflow

Inordertoexpresstheresearchedphysicalmodelmoreconcisely,itisbetreatedasarectangleheat

exchangerwithaxialflowwhenwetakeintoaccountthepartialunitanditsinletandoutletonly.The

heatexchangerismadeupof36tubesspecificationofφ25mm×2.5mm×1000mm.Theexteriordimensionofheatexchangerisacubewiththedimensionof360mm×120mm×1000mm.TheelevationofheatexchangerisshowninFig.2(a).ArrangementstylesandparameteroftubesisshowninFig.2(b).

2 MathematicalModel

Inordertofoundthemathematicalmodelintheoreticalmethod,atheoreticalanalysismodelmustbebuiltfirstlyasFig.3.Thefollowingassumptionsandilluminationarenecessaryformodelingfluidflowingthroughtheinletregionanddistributor.

(1)Manymini-ostiolesbepunchedinthefluiddistributedbaffle,anddiameterofmini-ostiolesisinfinitesimal.

(2)Punchedratioofdistributedbaffleisacontinuousfunctionwithxcoordinate.

(3)FluidflowinthexdirectionasshowninFig.3.

(4)Fluidflowvelocitythroughdistributedbaffleisuniform.

Basedaboveassumptionsandnextanalysis,itiseasytodeducethevelocitydistributionofxdirectionandpressuredropofxdirection,zdirection,andx-zdirectionrespectively.

2.1 Velocitydistributionofxcoordinate

MassbalanceEquationoftheinfinitesimalisshowninFig.4,andthedifferentialEquationofx

Fig.4 SchematicDrawingofanalyzedarea

directionvelocityisobtainedasEqua.

(1):

(1)

  WhereAxandAzdenotetheareaofxcoordinateandzcoordinate,respectively.

And

;

(2)

Theboundaryconditionis:

x=Xwithu(x)=0,sotheintegralofEqua.

(2)canbeexpressedasfollows:

(3)

(4)

2.2 Pressuredropofxcoordinate

TheenergybalanceEquationoftheinfinitesimalareaisshowninFig.4.ItsdifferentialEquationof

xdirectionpressuredropcanbeobtainedasfollow:

(5)

  WhereDHishydraulicdiameterofshell-side.

Theboundaryconditionisx=0withΔp(x)=0,sotheintegraloftheEqua.(5)canbeexpressedas:

(6)

(7)

2.3 Pressuredropofx2zdirection

Accordingtodistributionandlocalflowpressuredropoffluidflowfromxdirectionturntozdirection,wecanobtainitslocalpressuredropEquationasfollow:

(8)

2.4 Pressuredropofzcoordinate

AccordingtothegenericEquationoflocalpressuredropoffluid,wecanobtainitslocalpressure

dropEquationoffluidflowthroughmini2ostiolesofdistributorbaffleinzdirectionasfollow:

(9)

 WhereA(x)denotepunchedratioasafunctionofindependentvariablex.

2.5 Homo-distributionEquation

Itiswellknownthattheconditionofhomo-distributionoffluidflowthroughdistributorbafflecanbededucedbymechanicalenergybalanceEquationfrominlettocrosssectionofoutlet.Thebasichomo-distributionEquationisshownasfollow:

(10)

2.6 Analysisandsolution

CombiningEqua.(7),(8),(9)withEqua.(10),itwillobtainthefollowingEquation:

(11)

 Whenx=X,thenitcanbededucedthepressuredropofboundarycondition:

and

 Puttingthepressuredropunderx=XintoEqua.(10),thenitcanbededucedthefollowingEquation:

(12)

 AssociatingwithEqua.(11)andEqua.(12),andsimplifyingexpression,thenitcanbededucedthefollowingEquation:

(13)

 Undertheidealmodel,optimalpunchedratiocanbeexpressedasfollow:

(14)

3 MathematicalModelofIn-line-squareAlignedTubeBundle

Forthein-line-squarealignedtubebundleofshell-sideofshell-and-tubeheatexchanger,wedefine

astubepitch,dasouterdiameter,andLasinstallationdistance.Sotuberowsofshell-sideunderin-line-squarealignedcanbeexpressesas

:

andputtingthemintoEqua.(4),thenthevelocityofxdirectioncanbeexpressedas:

(15)

 AccordingtotheEqua.(7),(8),and(9),thepressuredropofxdirection,x-zdirection,andzdirectionatin-line-squarealignedconditionofshell-sidecanalsobewrittenasEqua.(16),(17)and(18),respectively:

(16)

Where

denoteslocalpressuredropcoefficientofcrossingatubeatthein-line-squarealigned.

(17)

(18)

 PuttingEqua.(16),(17)and(18)intoEqua.(10),itcanbededucedasfollow.

(19)

Whenx=X,itcanbededucedthepressuredropofboundaryconditionasfollow:

and

 AndputtingthemintoEqua.(10),thenitcanbededucedthefollowingEquation:

(20)

AssociatingwithEqua.(19)andEqua.(20),andsimplifyingexpression,thenitcanbededucedfollowingEquation:

(21)

 Underthein-line-squarealignedtubebundleofshell-sideofshell-and-tubeheatexchanger,optimalpunchedratiooffluiddistributorintheinletoroutletregioncanbeexpressedasfollow:

(22)

 InEqua.(15)toEqua.(21),AzandAxcanbeexpressedasfollows:

(23)

(24)

 Itdefine

anddenotetheratioofoutdiameteroftubetotubepitch,puttingitandEqua.(23)and(24)intoEqua.(22),itwillbededucedfollowEquation

(25)

FromEqua.(2

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2