动能定理和机械能守恒定律.docx

上传人:b****7 文档编号:16647454 上传时间:2023-07-16 格式:DOCX 页数:13 大小:173.17KB
下载 相关 举报
动能定理和机械能守恒定律.docx_第1页
第1页 / 共13页
动能定理和机械能守恒定律.docx_第2页
第2页 / 共13页
动能定理和机械能守恒定律.docx_第3页
第3页 / 共13页
动能定理和机械能守恒定律.docx_第4页
第4页 / 共13页
动能定理和机械能守恒定律.docx_第5页
第5页 / 共13页
动能定理和机械能守恒定律.docx_第6页
第6页 / 共13页
动能定理和机械能守恒定律.docx_第7页
第7页 / 共13页
动能定理和机械能守恒定律.docx_第8页
第8页 / 共13页
动能定理和机械能守恒定律.docx_第9页
第9页 / 共13页
动能定理和机械能守恒定律.docx_第10页
第10页 / 共13页
动能定理和机械能守恒定律.docx_第11页
第11页 / 共13页
动能定理和机械能守恒定律.docx_第12页
第12页 / 共13页
动能定理和机械能守恒定律.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

动能定理和机械能守恒定律.docx

《动能定理和机械能守恒定律.docx》由会员分享,可在线阅读,更多相关《动能定理和机械能守恒定律.docx(13页珍藏版)》请在冰点文库上搜索。

动能定理和机械能守恒定律.docx

动能定理和机械能守恒定律

动能定理和机械能守恒定律

【考点透视】

一、理解功的概念

1.功是力的空间积累效应。

它和位移相对应。

计算功的方法有两种:

⑴按照定义求功。

即:

W=Fscosθ。

在高中阶段,这种方法只适用于恒力做功。

时F做正功,当

时F不做功,当

时F做负功。

这种方法也可以说成是:

功等于恒力和沿该恒力方向上的位移的乘积。

⑵用动能定理W=ΔEk或功能关系求功。

当F为变力时,高中阶段往往考虑用这种方法求功。

这种方法的依据是:

做功的过程就是能量转化的过程,功是能的转化的量度。

如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。

2.会判断正功、负功或不做功。

判断方法有:

用力和位移的夹角α判断;

用力和速度的夹角θ判断定;

用动能变化判断.

3.了解常见力做功的特点:

重力(或电场力)做功和路径无关,只与物体始末位置的高度差h(或电势差)有关:

W=mgh(或W=qU),当末位置低于初位置时,W>0,即重力做正功;反之则重力做负功。

滑动摩擦力做功与路径有关。

当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。

在弹性范围内,弹簧做功与始末状态弹簧的形变量有关系。

二、深刻理解功率的概念

1.功率的物理意义:

功率是描述做功快慢的物理量。

2.功率的定义式:

,所求出的功率是时间t内的平均功率。

3.功率的计算式:

P=Fvcosθ,其中θ是力与速度间的夹角。

该公式有两种用法:

①求某一时刻的瞬时功率。

这时F是该时刻的作用力大小,v取瞬时值,对应的P为F在该时刻的瞬时功率;②当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。

4.重力的功率可表示为PG=mgVy,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。

三、深刻理解动能的概念,掌握动能定理。

1.动能

是物体运动的状态量,而动能的变化ΔEK是与物理过程有关的过程量。

2.动能定理的表述

合外力做的功等于物体动能的变化。

(这里的合外力指物体受到的所有外力的合力,包括重力)。

表达式为W=ΔEK.

动能定理建立起过程量(功)和状态量(动能)间的联系。

这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。

功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。

四、掌握机械能守恒定律。

1.机械能守恒定律的两种表述

⑴在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。

⑵如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。

2.对机械能守恒定律的理解:

①机械能守恒定律的研究对象一定是系统,至少包括地球在内。

通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。

另外小球的动能中所用的v,也是相对于地面的速度。

②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。

③“只有重力做功”不等于“只受重力作用”。

在该过程中,物体可以受其它力的作用,只要这些力不做功或除重力之外的力做功的代数和为零。

2.机械能守恒定律的各种表达形式

,即

用⑴时,需要规定重力势能的参考平面。

用⑵时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。

尤其是用ΔE增=ΔE减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。

五、深刻理解功能关系,掌握能量守恒定律。

1.做功的过程是能量转化的过程,功是能的转化的量度。

能量守恒和转化定律是自然界最基本的规律之一。

而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。

本章的主要定理、定律都可由这个基本原理出发而得到。

需要强调的是:

功是一个过程量,它和一段位移(一段时间)相对应;而能是一个状态量,它与一个时刻相对应。

两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。

2.复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。

突出:

“功是能量转化的量度”这一基本概念。

①物体动能的增量由外力做的总功来量度:

W外=ΔEk,这就是动能定理。

②物体重力势能的增量由重力做的功来量度:

WG=-ΔEP,这就是势能定理。

同理:

电场力做功量度电势能的变化,即W电=-ΔEP。

③物体机械能的增量由重力以外的其他力做的功来量度:

W其=ΔE机,(W其表示除重力以外的其它力做的功),这就是机械能定理。

④当W其=0时,说明只有重力做功,所以系统的机械能守恒。

⑤一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。

Q=fd(d为这两个物体间相对移动的路程)。

【例题解析】

类型一:

功和功率的计算

变式训练1:

质量为m=0.5kg的物体从高处以水平的初速度V0=5m/s抛出,在运动t=2s内重力对物体做的功是多少?

这2s内重力对物体做功的平均功率是多少?

2s末,重力对物体做功的瞬时功率是多少?

(g取

 

类型二:

机车启动问题

例2.电动机通过一绳子吊起质量为8kg的物体,绳的拉力不能超过120N,电动机的功率不能超过1200W,要将此物体由静止起用最快的方式吊高90m(已知此物体在被吊高接近90m时,已开始以最大速度匀速上升)所需时间为多少?

 

变式训练2:

汽车的质量为m,发动机的额定功率为P,汽车由静止开始沿平直公路匀加速启动,加速度为a,假定汽车在运动中所受阻力为f(恒定不变),求汽车能保持作匀加速运动的时间。

类型三:

动能定理的应用

例3.如图所示,质量为m的物体置于光滑水平面上,一根绳子跨过定滑轮一端固定在物体上,另一端在力F作用下,以恒定速率v0竖直向下运动,物体由静止开始运动到绳与水平方向夹角

=45º过程中,绳中拉力对物体做的功为

A.

mv02B.mv02

C.

mv02D.

mv02

变式训练3:

质量为m的小球用长度为L的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7mg,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为()

A.mgL/4B.mgL/3C.mgL/2D.mgL

 

类型四:

机械能守恒定律的应用

例4.如图所示,半径为R的光滑圆形轨道固定在竖直面内。

小球A、B质量分别为m、βm(β为待定系数)。

A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为

,碰撞中无机械能损失。

重力加速度为g。

试求:

(1)待定系数β。

(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力。

 

变式训练4:

(08江苏卷)如图所示,两光滑斜面的倾角分别为30°和45°,质量分别为2m和m的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放.则在上述两种情形中正确的有

A.质量为2m的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的支持力的作用

B.质量为m的滑块均沿斜面向上运动

C.绳对质量为m滑块的拉力均大于该滑块对绳的拉力

D.系统在运动中机械能均守恒

类型五:

功能关系的应用

例5.如图所示,一轻弹簧左端固定在长木板M的左端,右端与小木块m连接,且m、M及M与地面间摩擦不计.开始时,m和M均静止,现同时对m、M施加等大反向的水平恒力F1和F2,设两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度。

对于m、M和弹簧组成的系统

A.由于F1、F2等大反向,故系统机械能守恒

B.当弹簧弹力大小与F1、F2大小相等时,m、M各自的动能最大

C.由于F1、F2大小不变,所以m、M各自一直做匀加速运动

D.由于F1、F2均能做正功,故系统的机械能一直增大

变式训练5:

一传送带装置示意图如图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,为画出),经过CD区域时是倾斜的,AB和CD都与BC相切。

现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。

稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。

每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动)。

已知在一段相当长的时间T内,共运送小货箱的数目为N。

这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。

求电动机的平均输出功率P。

 

【专题训练与高考预测】

1.运动员跳伞将经历加速下降和减速下降两个过程,将人和伞看成一个系统,在这两个过程中,下列说法正确的是()

A.阻力对系统始终做负功B.系统受到的合外力始终向下

C.重力做功使系统的重力势能增加D.任意相等的时间内重力做的功相等

2.如图,一轻绳的一端系在固定粗糙斜面上的O点,另一端

系一小球.给小球一足够大的初速度,使小球在斜面上做

圆周运动.在此过程中()

A.小球的机械能守恒

B.重力对小球不做功

C.绳的张力对小球不做功

D.在任何一段时间内,小球克服摩擦力所做的功总是等于小球动能的减少

3.如图所示,粗糙的斜面与光滑的水平面相连接,滑块沿水平面以

速度

运动.设滑块运动到A点的时刻为t=0,距A点的水平距

离为x,水平速度为

.由于

不同,从A点到B点的几种可

能的运动图象如下列选项所示,其中表示摩擦力做功最大的是()

 

4.如图所示.一根不可伸长的轻绳两端各系一个小球a和b,跨在两根固定在同一高度的光滑水平细杆上,质量为3m的a球置于地面上,质量为m的b球从水平位置静止释放.当a球对地面压力刚好为零时,b球摆过的角度为

.下列结论正确的是()

A.

=90°B.

=45°

C.b球摆动到最低点的过程中,重力对小球做功

的功率先增大后减小

D.b球摆动到最低点的过程中,重力对小球做功的功率一直增大

5.一滑块在水平地面上沿直线滑行,t=0时其速度为1m/s。

从此刻开始滑块运动方向上再施加一水平面作用F,力F和滑块的速度v随时间的变化规律分别如图a和图b所示。

设在第1秒内、第2秒内、第3秒内力F对滑块做的功分别为

则以下关系正确的是

()

A.

B.

C.

D.

6.如图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为()

A.hB.1.5h

C.2hD.2.5h

7.物体做自由落体运动,Ek代表动能,Ep代表势能,h代表下落的距离,以水平地面为零势能面。

下列所示图像中,能正确反映各物理量之间关系的是()

8.如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m。

小球到达槽最低点时速率为10m/s,并继续沿槽壁运动直到从槽左端边缘飞出……,如此反复几次,设摩擦力恒定不变,小球与槽壁相碰时机械能不损失,求:

(1)小球第一次离槽上升的高度h;

(2)小球最多能飞出槽外的次数(取g=10m/s2)。

9.滑板运动是一项非常刺激的水上运动,研究表明,在进行滑板运动时,水对滑板的作用力Fx垂直于板面,大小为kv2,其中v为滑板速率(水可视为静止).某次运动中,在水平牵引力作用下,当滑板和水面的夹角θ=37°时(如图所示),滑板做匀速直线运动,相应的k=54kg/m,入和滑板的总质量为108kg,试求(重力加速度g取10m/s2,sin37°取

,忽略空气阻力):

(1)水平牵引力的大小;

(2)滑板的速率;

(3)水平牵引力的功率.

 

10.如图所示,竖直平面内的轨道ABCD由水平轨道AB与光滑的四分之一圆弧轨道CD组成,AB恰与圆弧CD在C点相切,轨道固定在水平面上。

一个质量为m的小物块(可视为质点)从轨道的A端以初动能E冲上水平轨道AB,沿着轨道运动,由DC弧滑下后停在水平轨道AB的中点。

已知水平轨道AB长为L。

求:

(1)小物块与水平轨道的动摩擦因数

(2)为了保证小物块不从轨道的D端离开轨道,圆弧轨道的半径R至少是多大?

(3)若圆弧轨道的半径R取第

(2)问计算出的最小值,增大小物块的初动能,使得小物块冲上轨道后可以达到最大高度是1.5R处,试求物块的初动能并分析物块能否停在水平轨道上。

如果能,将停在何处?

如果不能,将以多大速度离开水平轨道?

 

11.图中有一个竖直固定在地面的透气圆筒,筒中有一劲度为k的轻弹簧,其下端固定,上端连接一质量为m的薄滑块,圆筒内壁涂有一层新型智能材料——ER流体,它对滑块的阻力可调.起初,滑块静止,ER流体对其阻力为0,弹簧的长度为L,现有一质量也为m的物体从距地面2L处自由落下,与滑块碰撞后粘在一起向下运动.为保证滑块做匀减速运动,且下移距离为

时速度减为0,ER流体对滑块的阻力须随滑块下移而变。

试求(忽略空气阻力):

(1)下落物体与滑块碰撞过程中系统损失的机械能;

(2)滑块向下运动过程中加速度的大小;

(3)滑块下移距离d时ER流体对滑块阻力的大小.

 

12.如图所示,光滑坡道顶端距水平面高度为h,质量为m的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端恰位于滑道的末端O点。

已知在OM段,物块A与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:

(1)物块速度滑到O点时的速度大小;

(2)弹簧为最大压缩量d时的弹性势能(设弹簧处于原长时弹性势能为零)

(3)若物块A能够被弹回到坡道上,则它能够上升的最大高度是多少?

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2