粒子图像测速技术.docx

上传人:b****7 文档编号:16707430 上传时间:2023-07-16 格式:DOCX 页数:22 大小:322.39KB
下载 相关 举报
粒子图像测速技术.docx_第1页
第1页 / 共22页
粒子图像测速技术.docx_第2页
第2页 / 共22页
粒子图像测速技术.docx_第3页
第3页 / 共22页
粒子图像测速技术.docx_第4页
第4页 / 共22页
粒子图像测速技术.docx_第5页
第5页 / 共22页
粒子图像测速技术.docx_第6页
第6页 / 共22页
粒子图像测速技术.docx_第7页
第7页 / 共22页
粒子图像测速技术.docx_第8页
第8页 / 共22页
粒子图像测速技术.docx_第9页
第9页 / 共22页
粒子图像测速技术.docx_第10页
第10页 / 共22页
粒子图像测速技术.docx_第11页
第11页 / 共22页
粒子图像测速技术.docx_第12页
第12页 / 共22页
粒子图像测速技术.docx_第13页
第13页 / 共22页
粒子图像测速技术.docx_第14页
第14页 / 共22页
粒子图像测速技术.docx_第15页
第15页 / 共22页
粒子图像测速技术.docx_第16页
第16页 / 共22页
粒子图像测速技术.docx_第17页
第17页 / 共22页
粒子图像测速技术.docx_第18页
第18页 / 共22页
粒子图像测速技术.docx_第19页
第19页 / 共22页
粒子图像测速技术.docx_第20页
第20页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

粒子图像测速技术.docx

《粒子图像测速技术.docx》由会员分享,可在线阅读,更多相关《粒子图像测速技术.docx(22页珍藏版)》请在冰点文库上搜索。

粒子图像测速技术.docx

粒子图像测速技术

粒子图像测速技术(PIV)

1.PIV简介

粒子图像测速技术(PIV)作为一种全新的无扰、瞬态、全场速度测量方法,在流体力学及空气动力学研究领域具有极高的学术意义和实用价值。

粒子图像测速技术(PIV)是一种用多次摄像以记录流场中粒子的位置,并分析摄得的图像,从而测出流动速度的方法。

PIV是流场显示技术的新发展。

它是在传统流动显示技术基础上,利用图形图像处理技术发展起来的一种新的流动测量技术。

综合了单点测量技术和显示测量技术的优点,克服了两种测量技术的弱点而成的,既具备了单点测量技术的精度和分辨率,又能获得平面流场显示的整体结构和瞬态图像。

图1.粒子图像测速技术

2.PIV的原理

PIV技术原理简单,就是在流场中撤入示踪粒子,以粒子速度代表其所在流场内相应位置处流体的运动速度.应用强光(片形光束)照射流场中的一个测试平面,用成像的方法(照像或摄像)记录下2次或多次曝光的粒子位置,用图像分析技术得到各点粒子的位移,由此位移和曝光的时间间隔便可得到流场中各点的流速矢量,并计算出其他运动参量(包括流场速度矢量图、速度分量图、流线图、漩度图等)。

因采用的记录设备不同,又分别称FPIV(用胶片作记录)和数字式图像测速DPIV(用CCD相机作记录)。

3.PIV系统组成

PIV系统通常由三部分组成,每一部分的要求都相当严格。

图2.粒子图像测速系统结构

(1)直接反映流场流动的示踪粒子。

除要满足一般要求(无毒、无腐蚀、无磨蚀、化学性质稳定、清洁等)外,还要满足流动跟随性和散光性等要求。

要使粒子的流动跟随性好,就需要粒子的直径较小,但这会使粒子的散光性降低,不易于成像。

因此在选取粒子时需综合考虑各个因素。

总之,粒子选取的原则为:

粒子的密度尽量等于流体的密度,粒子的直径要在保证散射光强的条件下尽可能的小,一般为拜m量级。

常用的示踪粒子有聚苯乙烯、铝、镁、二氧化钦、玻璃球等。

柴油机汽缸内气流运动实验研究中,最常使用的示踪粒子有二氧化钦、铝粉等。

在实际实验中,它们的光散射性不错,可拍摄到清晰的图像,但由于其直径和密度太大,导致其跟随性很差,不能真实反映缸内气流的实际运动。

此外,固体颗粒进入缸内后有时会粘附在石英玻璃窗口上,由于光线无法穿过不透明的固体颗粒,使粒子成像亮度受到影响。

并且固体颗粒一般硬度较大,可能会造成气缸内壁和石英玻璃窗口的磨损。

因此只能定期的拆除气缸盖,擦拭窗口,这会增加许多工作量。

在实验研究中,还必须考虑粒子浓度问题。

当浓度很大时,粒子像会重叠在一起,由于激光为干涉光,所以在底片上会形成激光散斑而不是独立的粒子像。

虽然用激光散斑同样可以测取散斑场的位移,但对于流场而言,由于散斑场的稳定性较差,提取散斑场的位移相对地比较困难。

当粒子浓度太低时,粒子对的数目可能太少,结果将得不到足够多点的流速,也就得不到足够准确的流速分布。

PIV技术中粒子浓度一般为10左右(在查询区域内),这样使每个查询区中都有足够的粒子对,能够得到有效的速度结果。

(2)成像系统。

双脉冲激光片光源、透镜和照相机构成PIV的成像系统。

用于照射动态微粒场的片光源由脉冲激光通过透镜形成,拍摄粒子场照片的相机垂直于片光。

曝光脉冲要尽可能的短,曝光间隔即左能够随流场速度及其分辨率的不同而进行调节(一般为微秒至毫秒量级)。

片光要尽可能的薄(lmm以下),片光的厚度控制对于二维的PIV来说非常重要,太厚就把三维的速度压入二维,也就不能如实反应流场的二维分布。

曝光时间和曝光能量是一对矛盾。

为了把有限的光能量都用于曝光,PIV系统一般采用双脉冲激光器作为光源。

一般水中曝光脉冲能量在几十毫焦耳就可以得到理想的曝光图像,在空气中则要求更高。

(3)图像处理系统。

图像处理系统用于完成从两次曝光的粒子图像中提取速度场。

将粒子图像分成若干查询区(同一小区内的粒子假定有相同的移动速度,并且作直线运动;此外,查询区内的最大粒子位移不能超过查询区的1/4;在片光厚度方向的位移不能超过片光厚度的114;平面位移要大于两倍粒子图像直径),在查询光束的作用下,利用杨氏条纹法或自相关法逐个处理查询区,得到粒子的移动速度,进而得到速度场分布。

在早期的PW技术中,由于两次曝光图像被记录在同一幅胶片上,所以速度的流向存在180。

的方向不确定性(方向二义性),为得到速度方向,需要一套复杂的系统。

可使用粒子图像预偏置方法或双色PIV技术来处理方向二义性问题110)。

由于PIV查询系统及其图像处理系统较为复杂,仪器调节、胶片处理以及数据处理等往往要花费较多的时间,所以随着数字成像系统及其数字图像处理技术的发展,FPIV技术正在被DPIV技术所代替。

4.PIV分类

4.1按其成像介质

PIV按其成像介质可分为基于模拟介质的GPIV(graphicparticleimagevelocimetry)和基于CCD的DPIV(digitalparticleimagevelocimetry)。

GPIV是用照相采集的方法将序列图像记录在胶片或录像带上,然后用光学方法或扫描仪形成数字图像,实现自相关模板匹配运动估值.其优点是模拟介质分辨率高(如普通135底片包含有10500×7500个像素,这样一张100mm×125mm的肖像底片将会有30000x37500个像素,普通摄像管所能提供的分辨率约为500×500个像素,较高分辨率的摄像管也不过做到4096x4096个像素),可以观测较大的视场,且精度高,图像捕获速度快,可以测量高速流场(马广云,申功圻HJ)但是,由于其成像后的处理时间长,因而无法实现在线应用,成为其不可克服的缺陷.同时由于GPIV一般将2次或多次曝光成像在同一底片上(单帧多曝光图像),在图像分析上有速度矢量方向二义性问题,虽已有解决方法,但处理较复杂。

图3.用于柴油机喷雾测试的DPIV系统简图

DPIV系统实际上是PIV系统的数字化形式,它强调用数字方法来记录视频图像而不是摄影胶片,DPIV所有的分析都用计算机来进行,代替了GPIV的复杂的光学系统,不需再做胶片的湿处理,同时DPIV将2次或多次曝光的粒子由CCD-Camera经数字图像采集设备采得该截面的序列图像(单帧单曝光图像而非GPIV的单帧多曝光图像),自然解决了速度方向的二义性问题.DPIV的决定性优点在于便于数字处理,能提供实验参数的在线调整,使得它成为PIV的重要发展方向。

4.2按粒子密度分

PIV源于固体应变位移测量的散斑技术,首先将这一技术从原理及方法上引入流场测速中当首推Adrain,他将PIV技术按照示踪粒子的浓度分为激光散斑测速技术(1aserspecklevelocimetry,LSV),粒子图像测速仪(particleimagevelocimetry,PⅣ)以及粒子跟踪测速仪(particletrackingvelocimetry,PTV)三类。

当流场中粒子浓度极低时,我们有可能识别、跟踪单个粒子的运动,从记录的粒子图像中测得单个粒子的位移,这种低粒子图像密度模式的测速方法即为PTV技术;当流场中粒子浓度很高时,以至于用相干光照明时,粒子衍射图像在成像系统像面上互相干涉形成激光散斑图案(散斑已经掩盖了真实的粒子图像),这种极高粒子图像密度模式的测速方法即为LSV技术;PIV技术是指选择粒子浓度使其成为较高成像密度模式,但并未在成像系统像面上形成散斑图案,而仍然是真实的粒子图像(或单个的粒子衍射图像),此时这些粒子已无法单独识别,底片判读只能获得一判读小区域(interrogationarea)中多个粒子位移的统计平均值.目前,LSV技术己很少采用,这是因为高粒子浓度对流场干扰较大,而测量精度、实验设备均与PIV技术基本相同.PTV技术从本质上讲是PIV技术的延伸,由于粒子稀疏,使得可提取的流场速度信息较少,限制了对流场细微结构的研究.此外PTV取得原始速度向量点的位置是随机分布的(PIV被认为是按网格状分布的),需要内捕建立网格表示图.但是PTV算法似乎比PIV算法更容易从二维推广至三维。

5.三维PIV(3D—PIV)技术

前面介绍的PIV方法采用的是片光束照明方式,因此只能测量局限于片形光束所照明的二维平面内的速度分布.而实际上三维流场的三维速度分布测量才是PIV技术的最终目标.关于三维流速的测量方法,目前主要有全息照相(摄像)法、立体照相(摄像)法及二维加一维法(2D+ID)法等.

5.1全息照相法(holographicparticleimagevelocimetry,HPIV)

根据全息照相(摄像)的原理获得全息图像,由于全息图像把流场的三维速度场瞬时凝固在一张全息胶片中,通过分层再现,既可提取流场的三维信息.全息照相仅是记录粒子运动的手段,其处理方法还是依靠PIV或PTv技术和三维重建理论。

HPIV由于涉及到复杂的光路系统,对设备及环境的要求较为苛亥U,距离实际应用还有一段距离。

5.2立体照相(摄像)法

体视摄像法研究较多,该法是用2台或多台相机从不同方位记录被照明流场的一个切面,根据两相机空间位置投影关系和视差,把两相机的2个二维坐标映射为空间一点的三维坐标,把两相机的两个二维位移场映射为空间一点的三维位移场,完成粒子空间位移场和速度场的重建137J.应当说目前Adrain的工作代表了此领域的最高水平.国内以jE航申功忻教授为领导的课题小组在3D·PIV的研究方面也进行了开创性的工作。

5.32D+1D法

是切面内二维测量和纵向(离面)一维测量相结合的三维速度测量方法,又可分为粒子跟踪色谱法、粒子跟踪光强梯度法、粒子跟踪温度梯度法以及实验与数值相结合的方法(在获得多个平行切面二维速度场的情况下,利用不可压缩性流体的连续性方程求得纵向流速分布)等。

6PIV的优势

PIV的突出优点表现在:

(1)突破了空间单点测量(如LDV)的局限性,实现了全流场瞬态测量;

(2)实现了无扰测量,而用毕托管或HwFV等仪器测量时对流场都有~定的干扰;(3)容易求得流场的其他物理量,由于得到的是全场的速度信息,可方便的运用流体运动方程求解诸如压力场、涡量场等物理信息.因此,该技术在流体测量中占有重要的地位.

 

电厂分散控制系统故障分析与处理

作者:

单位:

摘要:

归纳、分析了电厂DCS系统出现的故障原因,对故障处理的过程及注意事项进行了说明。

为提高分散控制系统可靠性,从管理角度提出了一些预防措施建议,供参考。

关键词:

DCS 故障统计分析 预防措施

随着机组增多、容量增加和老机组自动化化改造的完成,分散控制系统以其系统和网络结构的先进性、控制软件功能的灵活性、人机接口系统的直观性、工程设计和维护的方便性以及通讯系统的开放性等特点,在电力生产过程中得到了广泛应用,其功能在DAS、MCS、BMS、SCS、DEH系统成功应用的基础上,正逐步向MEH、BPC、ETS和ECS方向扩展。

但与此同时,分散控制系统对机组安全经济运行的影响也在逐渐增加;因此如何提高分散控制系统的可靠性和故障后迅速判断原因的能力,对机组的安全经济运行至关重要。

本文通过对浙江电网机组分散控制系统运行中发生的几个比较典型故障案例的分析处理,归纳出提高分散系统的可靠性的几点建议,供同行参考。

1 考核故障统计

浙江省电力行业所属机组,目前在线运行的分散控制系统,有TELEPERM-ME、MOD300,INFI-90,NETWORK-6000,MACSⅠ和MACS-Ⅱ,XDPS-400,A/I。

DEH有TOSAMAP-GS/C800,DEH-IIIA等系统。

笔者根据各电厂安全简报记载,将近几年因分散控制系统异常而引起的机组故障次数及定性统计于表1

表1 热工考核故障定性统计

2 热工考核故障原因分析与处理

根据表1统计,结合笔者参加现场事故原因分析查找过程了解到的情况,下面将分散控制系统异常(浙江省电力行业范围内)而引起上述机组设备二类及以上故障中的典型案例分类浅析如下:

2.1 测量模件故障典型案例分析

测量模件“异常”引起的机组跳炉、跳机故障占故障比例较高,但相对来讲故障原因的分析查找和处理比较容易,根据故障现象、故障首出信号和SOE记录,通过分析判断和试验,通常能较快的查出“异常”模件。

这种“异常”模件有硬性故障和软性故障二种,硬性故障只能通过更换有问题模件,才能恢复该系统正常运行;而软性故障通过对模件复位或初始化,系统一般能恢复正常。

比较典型的案例有三种:

(1)未冗余配置的输入/输出信号模件异常引起机组故障。

如有台130MW机组正常运行中突然跳机,故障首出信号为“轴向位移大Ⅱ”,经现场检查,跳机前后有关参数均无异常,轴向位移实际运行中未达到报警值保护动作值,本特利装置也未发讯,但LPC模件却有报警且发出了跳机指令。

因此分析判断跳机原因为DEH主保护中的LPC模件故障引起,更换LPC模件后没有再发生类似故障。

另一台600MW机组,运行中汽机备用盘上“汽机轴承振动高”、“汽机跳闸”报警,同时汽机高、中压主汽门和调门关闭,发电机逆功率保护动作跳闸;随即高低压旁路快开,磨煤机B跳闸,锅炉因“汽包水位低低”MFT。

经查原因系#1高压调门因阀位变送器和控制模件异常,使调门出现大幅度晃动直至故障全关,过程中引起#1轴承振动高高保护动作跳机。

更换#1高压调门阀位控制卡和阀位变送器后,机组启动并网,恢复正常运行。

(2)冗余输入信号未分模件配置,当模件故障时引起机组跳闸:

如有一台600MW机组运行中汽机跳闸,随即高低压旁路快开,磨煤机B和D相继跳闸,锅炉因“炉膛压力低低”MFT。

当时因系统负荷紧张,根据SOE及DEH内部故障记录,初步判断的跳闸原因而强制汽机应力保护后恢复机组运行。

二日后机组再次跳闸,全面查找分析后,确认2次机组跳闸原因均系DEH系统三路“安全油压力低”信号共用一模件,当该模件异常时导致汽轮机跳闸,更换故障模件后机组并网恢复运行。

另一台200MW机组运行中,汽包水位高Ⅰ值,Ⅱ值相继报警后MFT保护动作停炉。

查看CRT上汽包水位,2点显示300MM,另1点与电接点水位计显示都正常。

进一步检查显示300MM的2点汽包水位信号共用的模件故障,更换模件后系统恢复正常。

针对此类故障,事后热工所采取的主要反事故措施,是在检修中有针对性地对冗余的输入信号的布置进行检查,尽可能地进行分模件处理。

(3)一块I/O模件损坏,引起其它I/O模件及对应的主模件故障:

如有台机组“CCS控制模件故障"及“一次风压高低”报警的同时,CRT上所有磨煤机出口温度、电流、给煤机煤量反馈显示和总煤量百分比、氧量反馈,燃料主控BTU输出消失,F磨跳闸(首出信号为“一次风量低”)。

4分钟后CRT上磨煤机其它相关参数也失去且状态变白色,运行人员手动MFT(当时负荷410MW)。

经检查电子室制粉系统过程控制站(PCU01柜MOD4)的电源电压及处理模件底板正常,二块MFP模件死机且相关的一块CSI模件((模位1-5-3,有关F磨CCS参数)故障报警,拔出检查发现其5VDC逻辑电源输入回路、第4输出通道、连接MFP的I/O扩展总线电路有元件烧坏(由于输出通道至BCS(24VDC),因此不存在外电串入损坏元件的可能)。

经复位二块死机的MFP模件,更换故障的CSI模件后系统恢复正常。

根据软报警记录和检查分析,故障原因是CSI模件先故障,在该模件故障过程中引起电压波动或I/O扩展总线故障,导致其它I/O模件无法与主模件MFP03通讯而故障,信号保持原值,最终导致主模件MFP03故障(所带A-F磨煤机CCS参数),CRT上相关的监视参数全部失去且呈白色。

2.2 主控制器故障案例分析

由于重要系统的主控制器冗余配置,大大减少了主控制器“异常”引发机组跳闸的次数。

主控制器“异常”多数为软故障,通过复位或初始化能恢复其正常工作,但也有少数引起机组跳闸,多发生在双机切换不成功时,如:

(1)有台机组运行人员发现电接点水位计显示下降,调整给泵转速无效,而CRT上汽包水位保持不变。

当电接点水位计分别下降至甲-300mm,乙-250mm,并继续下降且汽包水位低信号未发,MFT未动作情况下,值长令手动停炉停机,此时CRT上调节给水调整门无效,就地关闭调整门;停运给泵无效,汽包水位急剧上升,开启事故放水门,甲、丙给泵开关室就地分闸,油泵不能投运。

故障原因是给水操作站运行DPU死机,备用DPU不能自启动引起。

事后热工对给泵、引风、送风进行了分站控制,并增设故障软手操。

(2)有台机组运行中空预器甲、乙挡板突然关闭,炉膛压力高MFT动作停炉;经查原因是风烟系统I/O站DPU发生异常,工作机向备份机自动切换不成功引起。

事后电厂人员将空预器烟气挡板甲1、乙1和甲2、乙2两组控制指令分离,分别接至不同的控制站进行控制,防止类似故障再次发生。

2.3 DAS系统异常案例分析

DAS系统是构成自动和保护系统的基础,但由于受到自身及接地系统的可靠性、现场磁场干扰和安装调试质量的影响,DAS信号值瞬间较大幅度变化而导致保护系统误动,甚至机组误跳闸故障在我省也有多次发生,比较典型的这类故障有:

(1)模拟量信号漂移:

为了消除DCS系统抗无线电干扰能力差的缺陷,有的DCS厂家对所有的模拟量输入通道加装了隔离器,但由此带来部分热电偶和热电阻通道易电荷积累,引起信号无规律的漂移,当漂移越限时则导致保护系统误动作。

我省曾有三台机组发生此类情况(二次引起送风机一侧马达线圈温度信号向上漂移跳闸送风机,联跳引风机对应侧),但往往只要松一下端子板接线(或拆下接线与地碰一下)再重新接上,信号就恢复了正常。

开始热工人员认为是端子柜接地不好或者I/O屏蔽接线不好引起,但处理后问题依旧。

厂家多次派专家到现场处理也未能解决问题。

后在机组检修期间对系统的接地进行了彻底改造,拆除原来连接到电缆桥架的AC、DC接地电缆;柜内的所有备用电缆全部通过导线接地;UPS至DCS电源间增加1台20kVA的隔离变压器,专门用于系统供电,且隔离变压器的输出端N线与接地线相连,接地线直接连接机柜作为系统的接地。

同时紧固每个端子的接线;更换部份模件并将模件的软件版本升级等。

使漂移现象基本消除。

(2)DCS故障诊断功能设置不全或未设置。

信号线接触不良、断线、受干扰,使信号值瞬间变化超过设定值或超量程的情况,现场难以避免,通过DCS模拟量信号变化速率保护功能的正确设置,可以避免或减少这类故障引起的保护系统误动。

但实际应用中往往由于此功能未设置或设置不全,使此类故障屡次发生。

如一次风机B跳闸引起机组RB动作,首出信号为轴承温度高。

经查原因是由于测温热电阻引线是细的多股线,而信号电缆是较粗的单股线,两线采用绞接方式,在震动或外力影响下连接处松动引起轴承温度中有点信号从正常值突变至无穷大引起(事后对连接处进行锡焊处理)。

类似的故障有:

民工打扫现场时造成送风机轴承温度热电阻接线松动引起送风机跳闸;轴承温度热电阻本身损坏引起一次风机跳闸;因现场干扰造成推力瓦温瞬间从99℃突升至117℃,1秒钟左右回到99℃,由于相邻第八点已达85℃,满足推力瓦温度任一点105℃同时相邻点达85℃跳机条件而导致机组跳闸等等。

预防此类故障的办法,除机组检修时紧固电缆和电缆接线,并采用手松拉接线方式确认无接线松动外,是完善DCS的故障诊断功能,对参与保护连锁的模拟量信号,增加信号变化速率保护功能尤显重要(一当信号变化速率超过设定值,自动将该信号退出相应保护并报警。

当信号低于设定值时,自动或手动恢复该信号的保护连锁功能)。

(3)DCS故障诊断功能设置错误:

我省有台机组因为电气直流接地,保安1A段工作进线开关因跳闸,引起挂在该段上的汽泵A的工作油泵A连跳,油泵B连锁启动过程中由于油压下降而跳汽泵A,汽泵B升速的同时电泵连锁启动成功。

但由于运行操作速度过度,电泵出口流量超过量程,超量程保护连锁开再循环门,使得电泵实际出水小,B泵转速上升到5760转时突然下降1000转左右(事后查明是抽汽逆止阀问题),最终导致汽包水位低低保护动作停炉。

此次故障是信号超量程保护设置不合理引起。

一般来说,DAS的模拟量信号超量程、变化速率大等保护动作后,应自动撤出相应保护,待信号正常后再自动或手动恢复保护投运。

2.4 软件故障案例分析

分散控制系统软件原因引起的故障,多数发生在投运不久的新软件上,运行的老系统发生的概率相对较少,但一当发生,此类故障原因的查找比较困难,需要对控制系统软件有较全面的了解和掌握,才能通过分析、试验,判断可能的故障原因,因此通常都需要厂家人员到现场一起进行。

这类故障的典型案例有三种:

(1)软件不成熟引起系统故障:

此类故障多发生在新系统软件上,如有台机组80%额定负荷时,除DEH画面外所有DCS的CRT画面均死机(包括两台服务器),参数显示为零,无法操作,但投入的自动系统运行正常。

当时采取的措施是:

运行人员就地监视水位,保持负荷稳定运行,热工人员赶到现场进行系统重启等紧急处理,经过30分钟的处理系统恢复正常运行。

故障原因经与厂家人员一起分析后,确认为DCS上层网络崩溃导致死机,其过程是服务器向操作员站发送数据时网络阻塞,引起服务器与各操作员站的连接中断,造成操作员站读不到数据而不停地超时等待,导致操作员站图形切换的速度十分缓慢(网络任务未死)。

针对管理网络数据阻塞情况,厂家修改程序考机测试后进行了更换。

另一台机组曾同时出现4台主控单元“白灯”现象,现场检查其中2台是因为A机备份网停止发送,1台是A机备份网不能接收,1台是A机备份网收、发数据变慢(比正常的站慢几倍)。

这类故障的原因是主控工作机的网络发送出现中断丢失,导致工作机发往备份机的数据全部丢失,而双机的诊断是由工作机向备份机发诊断申请,由备份机响应诊断请求,工作机获得备份机的工作状态,上报给服务器。

由于工作机的发送数据丢失,所以工作机发不出申请,也就收不到备份机的响应数据,认为备份机故障。

临时的解决方法是当长时间没有正确发送数据后,重新初始化硬件和软件,使硬件和软件从一个初始的状态开始运行,最终通过更新现场控制站网络诊断程序予以解决。

(2)通信阻塞引发故障:

使用TELEPERM-ME系统的有台机组,负荷300MW时,运行人员发现煤量突减,汽机调门速关且CRT上所有火检、油枪、燃油系统均无信号显示。

热工人员检查发现机组EHF系统一柜内的I/OBUS接口模件ZT报警灯红闪,操作员站与EHF系统失去偶合,当试着从工作站耦合机进入OS250PC软件包调用EHF系统时,提示不能访问该系统。

通过查阅DCS手册以及与SIEMENS专家间的电话分析讨论,判断故障原因最大的可能是在三层CPU切换时,系统处理信息过多造成中央CPU与近程总线之间的通信阻塞引起。

根据商量的处理方案于当晚11点多在线处理,分别按三层中央柜的同步模件的SYNC键,对三层CPU进行软件复位:

先按CPU1的SYNC键,相应的红灯亮后再按CPU2的SYNC键。

第二层的同步红灯亮后再按CPU3的同步模件的SYNC键,按3秒后所有的SYNC的同步红灯都熄灭,系统恢复正常。

(3)软件安装或操作不当引起:

有两台30万机组均使用ConductorNT5.0作为其操作员站,每套机组配置3个SERVER和3个CLIENT,三个CLIENT分别配置为大屏、值长站和操作员站,机组投运后大屏和操作员站多次死机。

经对全部操作员站的SERVER和CLIENT进行全面诊断和多次分析后,发现死机的原因是:

1)一台SERVER因趋势数据文件错误引起它和挂在它上的CLIENT在当调用趋势画面时画面响应特别缓慢(俗称死机)。

在删除该趋势数据文件后恢复正常。

2)一台SERVER因文件类型打印设备出错引起该SERVER的内存全部耗尽,引起它和挂在它上的CLIENT的任何操作均特别缓慢,这可通过任务管理器看到DEV.EXE进程消耗掉大量内存。

该问题通过删除文件类型打印设备和重新组

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 数学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2