三相异步电动机的PLC控制论文概述.docx

上传人:b****6 文档编号:16770228 上传时间:2023-07-17 格式:DOCX 页数:23 大小:140.76KB
下载 相关 举报
三相异步电动机的PLC控制论文概述.docx_第1页
第1页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第2页
第2页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第3页
第3页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第4页
第4页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第5页
第5页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第6页
第6页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第7页
第7页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第8页
第8页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第9页
第9页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第10页
第10页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第11页
第11页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第12页
第12页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第13页
第13页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第14页
第14页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第15页
第15页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第16页
第16页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第17页
第17页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第18页
第18页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第19页
第19页 / 共23页
三相异步电动机的PLC控制论文概述.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

三相异步电动机的PLC控制论文概述.docx

《三相异步电动机的PLC控制论文概述.docx》由会员分享,可在线阅读,更多相关《三相异步电动机的PLC控制论文概述.docx(23页珍藏版)》请在冰点文库上搜索。

三相异步电动机的PLC控制论文概述.docx

三相异步电动机的PLC控制论文概述

 

毕业论文

 

三相异步电动机的PLC控制

 

摘要

PLC在三相异步电动机控制中的应用,与传统的继电器控制相比具有速度快,可靠性高,灵活性强,功能完善等优点。

长期以来,PLC始终处于自动化领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用,它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。

本文设计了2个三相异步电动机的PLC控制电路,分别是三相异步电动机的正反转控制和两台电动机顺序起动联锁控制,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强等优点,可作为高校学生学习PLC的控制技术的参考,也可作为工业电机的自动控制电路。

关键词:

PLC;三相异步电动机;继电器

引言

  本系统的控制是采用PLC的编程语言----梯形语言,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。

 

目录

目录错误!

未定义书签。

第一章三相异步电动机基础1

1.1三相异步电动机的基本结构1

1.2三相异步电动机的工作原理3

1.3三相异步电动机的几个工作过程的分析3

第二章PLC基础10

2.1PLC的定义10

2.2PLC与继电器控制的区别10

2.3PLC的工作原理10

2.4PLC的应用分类11

2.5可编程序控制器的编程语言概述12

第三章三相异步电动机的PLC控制16

3.1三相异步电机的正反转控制16

3.2两台电动机顺序起动联锁控制17

3.3三相异步电动机使用PLC控制优点19

结论20

参考文献22

 

第一章三相异步电动机基础

1.1三相异步电动机的基本结构

三相异步电动机由静止的定子和旋转的转子两个重要部分组成,定子和转子之间由气隙分开。

图1-1为三相异步电动机结构示意图。

三相异步电动机的结构主要由两个部分组成,一是固定不动的部分(简称定子),二是可以自由旋转的部分(简称转子)。

定子与转子之间有一个很小的气隙。

此外,还有机座、端盖轴承、接线盒、风扇等其他部分。

异步电动机根据转子的绕组的结构不同,可分为鼠笼式和绕线式两种。

鼠笼式异步电动机的转子绕组本身自成闭合回路,整个转子形成一个坚实的整体,其结构简单牢固、运行可靠、价格便宜,应用最为广泛,小型异步电动机绝大部分属于这类。

绕线式异步电动机的结构比鼠笼式复杂,但启动性能较好,需要时还可以调节电动机的转速。

三相鼠笼式异步电动机的结构。

(a)外形图;(b)内部结构图

图1-1三相异步电动机结构示意图

1.1.1定子

  定子由定子铁心、定子绕组、机座和端盖等组成。

机座的主要作用是用来支撑电机各部件,因此应有足够的机械强度和刚度,通常用铸铁制成。

为了减少涡流和磁滞损耗,定子铁心用0.5mm厚涂有绝缘漆的硅钢片叠成,铁心内圆周上有许多均匀分布的槽,槽内嵌放定子绕组,。

定子是用来产生旋转磁场的,主要由定子铁心、定子绕组和机座等部分组成。

鼠笼式和绕线式异步电动机的定子结构是完全一样的。

交流电机(包括异步机和同步机)其定子结构相同。

*定子铁芯:

是磁路的一部分用0.5mm硅钢片迭成,且片间绝缘

*定子绕组:

绝缘漆包线制成用于通三相交流电源定子铁芯槽内嵌放三相绕组

图1-2三相异步电动机的定子

1.1.2转子

转子由转子铁心、转子绕组、转轴和风扇等组成。

转子铁心也用0.5mm厚硅钢片冲成转子冲片叠成圆柱形,压装在转轴上。

其外围表面冲有凹槽,用以安放转子绕组。

按转子绕组形式不同,可分为绕线式和鼠笼式两种。

转子是异步电动机的转动部分,它在定子绕组旋转磁场的作用下获得一定的转矩而旋转,通过联轴器或皮带轮带动其他机械设备做功。

转子由转子铁心、转子绕组和转轴等部分组成。

1.1.3机座

机座是电动机的外壳和支架,它的作用是固定和保护定子铁心、定子绕组并支撑端盖,所以要求机座具有足够的机械强度和刚度,能承受运输和运行过程中的各种作用力。

中、小型异步电动机通常采用铸铁机座,定子铁心紧贴在机座的内壁,电动机运行时铁心和绕组产生的热量主要通过机座表面散发到空气中去,因此,为了增加散热面积,在机座表面装有散热片。

对大型异步电动机,一般采用钢板焊接机座,此时为了满足通风散热的要求,机座内表面与铁心隔开适当距离,以形成空腔,作为冷却空气的通道。

1.2三相异步电动机的工作原理

图1-3为三相异步电动机工作原理示意图。

为简单起见,图中用一对磁极来进行分析。

三相定子绕组中通入交流电后,便在空间产生旋转磁场,在旋转磁场的作用下,转子将作切割磁力线的运动而在其两端产生感应电动势,感应电动势的方向可根据右手螺旋法则来判断。

由于转子本身为一闭合电路,所以在转子绕组中将产生感应电流,称为转子电流,电流方向与电动势的方向一致,即上面流出,下面流进。

图1-3三相异步电动机工作原理图

转子电流在旋转磁场中受到电磁力的作用,其方向可由左手定则来判断,上面的转子导条受到向右的力的作用,下面的转子导条受到向左的力的作用。

电磁力对转子的作用称为电磁转矩。

在电磁转矩的作用下,转子就沿着顺时针方向转动起来,显然转子的转动方向与旋转磁场的转动方向一致。

1.3三相异步电动机的几个工作过程的分析

1.3.1三相异步电动机的起动

三相异步电动机接通电源,使电机的转子从静止状态到转子以一定速度稳定运行的过程称为电动机的起动过程。

起动方法有直接起动和降压起动两种。

1.直接起动直接起动又称为全压起动,起动时,将电机的额定电压通过刀开关或接触器直接接到电动机的定子绕组上进行起动。

直接起动最简单,不需附加的起动设备,起动时间短。

只要电网容量允许,应尽量采用直接起动。

但这种起动方法起动电流大,一般只允许小功率的三相异步电动机进行直接起动;对大功率的三相异步电动机,应采取降压起动,以限制起动电流。

2.降压起动通过起动设备将电机的额定电压降低后加到电动机的定子绕组上,以限制电机的起动电流,待电机的转速上升到稳定值时,再使定子绕组承受全压,从而使电机在额定电压下稳定运行,这种起动方法称为降压起动。

前面讲过,起动转矩与电源电压的平方成正比,所以当定子端电压下降时,起动转矩大大减小。

这说明降压起动适用于起动转矩要求不高的场合,如果电机必须采用降压起动,则应轻载或空载起动。

常用的降压起动方法有下面三种。

(1)Y-△降压起动这种起动方法适用于电动机正常运行时接法为三角形的三相异步电动机。

电机起动时,定子绕组接成星形,起动完毕后,电动机切换为三角形。

图1-4Y-△降压起动控制线路

  图1-4是一个Y-△降压起动控制线路,起动时,电源开关QS闭合,控制电路先使得KM2闭合,电机星形起动,定子绕组由于采用了星形结构,其每相绕阻上承受的电压比正常接法时下降了。

当电机转速上升到稳定值时,控制电路再控制KM1闭合,于是定子绕组换成三角形接法,电机开始稳定运行。

定子绕组每相阻抗为|Z|,电源电压为U1,则采用△连接直接起动时的线电流为

采用Y连接降压起动时,每相绕组的线电流为

 (1-5)

由式(1-5)可以看出,采用Y-△降压起动时,起动电流比直接起动时下降了1/3。

电磁转矩与电源电压的平方成正比,由于电源电压下降了,所以起动转矩也减小了1/3。

以上分析表明,这种起动方法确实使电动机的起动电流减小了,但起动转矩也下降了,因此,这种起动方法是以牺牲起动转矩来减小起动电流的,只适用于允许轻载或空载起动的场合。

(2)自耦变压器降压起动这种起动方法是指起动时,定子绕组接三相自耦变压器的低压输出端,起动完毕后,切掉自耦变压器并将定子绕组直接接上三相交流电源,使电动机在额定电压下稳定运行。

1.3.2三相异步电动机的制动

 三相异步电动机脱离电源之后,由于惯性,电动机要经过一定的时间后才会慢慢停下来,但有些生产机械要求能迅速而准确地停车,那么就要求对电动机进行制动控制。

电动机的制动方法可以分为两大类:

机械制动和电气制动。

机械制动一般利用电磁抱闸的方法来实现;电气制动一般有能耗制动、反接制动和回馈发电制动三种方法。

1.能耗制动正常运行时,将QS闭合,电动机接三相交流电源起动运行。

制动时,将QS断开,切断交流电源的连接,并将直流电源引入电机的V、W两相,在电机内部形成固定的磁场。

电动机由于惯性仍然顺时针旋转,则转子绕阻作切割磁力线的运动,依据右手螺旋法则,转子绕组中将产生感应电流。

又根据左手定则可以判断,电动机的转子将受到一个与其运动方向相反的电磁力的作用,由于该力矩与运动方向相反,称为制动力矩,该力矩使得电动机很快停转。

制动过程中,电动机的动能全部转化成电能消耗在转子回路中,会引起电机发热,所以一般需要在制动回路串联一个大电阻,以减小制动电流。

这种制动方法的特点是制动平稳,冲击小,耗能小,但需要直流电源,且制动时间较长,一般多用于起重提升设备及机床等生产机械中。

2.反接制动反接制动是指制动时,改变定子绕组任意两相的相序,使得电动机的旋转磁场换向,反向磁场与原来惯性旋转的转子之间相互作用,产生一个与转子转向相反的电磁转矩,迫使电动机的转速迅速下降,当转速接近零时,切断电机的电源,如图1-6所示。

显然反接制动比能耗制动所用的时间要短。

(a)接线图;(b)原理图

图1-6反接制动示意图

正常运行时,接通KM1,电动机加顺序电源U—V—W起动运行。

需要制动时,接通KM2,从图可以看出,电动机的定子绕组接逆序电源V—U—W,该电源产生一个反向的旋转磁场,由于惯性,电动机仍然顺时针旋转,这时转子感应电流的方向按右手螺旋法则可以判断,再根据左手定则判断转子的受力F。

显然,转子会受到一个与其运动方向相反,而与新旋转磁场方向相同的制动力矩,使得电机的转速迅速降低。

当转速接近零时,应切断反接电源,否则,电动机会反方向起动。

反接制动的优点是制动时间短,操作简单,但反接制动时,由于形成了反向磁场,所以使得转子的相对转速远大于同步转速,转差率大大增大,转子绕组中的感应电流很大,能耗也较大。

为限制电流,一般在制动回路中串入大电阻。

另外,反接制动时,制动转矩较大,会对生产机械造成一定的机械冲击,影响加工精度,通常用于一些频繁正反转且功率小于10kW的小型生产机械中。

回馈发电制动回馈发电制动是指电动机转向不变的情况下,由于某种原因,使得电动机的转速大于同步转速,比如在起重机械下放重物、电动机车下坡时,都会出现这种情况,这时重物拖动转子,转速大于同步转速,转子相对于旋转磁场改变运动方向,转子感应电动势及转子电流也反向,于是转子受到制动力矩,使得重物匀速下降。

此中电动机将势能转换为电能回馈给电过程网。

1.3.3相异步电动机常见故障分析与处理

三相异步电动机应用广泛,但通过长期运行后,会发生各种故障,及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。

一、通电后电动机不能转动,但无异响,也无异味和冒烟。

1.故障原因①电源未通(至少两相未通);②熔丝熔断(至少两相熔断);③过流继电器调得过小;④控制设备接线错误。

  2.故障排除①检查电源回路开关,熔丝、接线盒处是否有断点,修复;②检查熔丝型号、熔断原因,换新熔丝;③调节继电器整定值与电动机配合;④改正接线。

二、通电后电动机不转,然后熔丝烧断

1.故障原因①缺一相电源,或定干线圈一相反接;②定子绕组相间短路;③定子绕组接地;④定子绕组接线错误;⑤熔丝截面过小;⑤电源线短路或接地。

2.故障排除①检查刀闸是否有一相未合好,可电源回路有一相断线;消除反接故障;②查出短路点,予以修复;③消除接地;④查出误接,予以更正;⑤更换熔丝;③消除接地点。

三、通电后电动机不转有嗡嗡声

l.故障原因①定、转子绕组有断路(一相断线)或电源一相失电;②绕组引出线始末端接错或绕组内部接反;③电源回路接点松动,接触电阻大;④电动机负载过大或转子卡住;⑤电源电压过低;⑥小型电动机装配太紧或轴承内油脂过硬;⑦轴承卡住。

2.故障排除①查明断点予以修复;②检查绕组极性;判断绕组末端是否正确;③紧固松动的接线螺丝,用万用表判断各接头是否假接,予以修复;④减载或查出并消除机械故障,⑤检查是还把规定的面接法误接为Y;是否由于电源导线过细使压降过大,予以纠正,⑥重新装配使之灵活;更换合格油脂;⑦修复轴承。

四、电动机起动困难,额定负载时,电动机转速低于额定转速较多

1.故障原因①电源电压过低;②面接法电机误接为Y;③笼型转子开焊或断裂;④定转子局部线圈错接、接反;③修复电机绕组时增加匝数过多;⑤电机过载。

2.故障排除①测量电源电压,设法改善;②纠正接法;③检查开焊和断点并修复;④查出误接处,予以改正;⑤恢复正确匝数;⑥减载。

五、电动机运行时响声不正常,有异响 

1.故障原因①转子与定子绝缘纸或槽楔相擦;②轴承磨损或油内有砂粒等异物;③定转子铁芯松动;④轴承缺油;⑤风道填塞或风扇擦风罩,⑥定转子铁芯相擦;⑦电源电压过高或不平衡;⑧定子绕组错接或短路。

 

2.故障排除①修剪绝缘,削低槽楔;②更换轴承或清洗轴承;③检修定、转子铁芯;④加油;⑤清理风道;重新安装置;⑥消除擦痕,必要时车内小转子;⑦检查并调整电源电压;⑧消除定子绕组故障。

六、运行中电动机振动较大 

1.故障原因①由于磨损轴承间隙过大;②气隙不均匀;③转子不平衡;④转轴弯曲;⑤铁芯变形或松动;⑥联轴器(皮带轮)中心未校正;⑦风扇不平衡;⑧机壳或基础强度不够;⑨电动机地脚螺丝松动;⑩笼型转子开焊断路;绕线转子断路;加定子绕组故障。

 

2.故障排除①检修轴承,必要时更换;②调整气隙,使之均匀;③校正转子动平衡;④校直转轴;⑤校正重叠铁芯,⑥重新校正,使之符合规定;⑦检修风扇,校正平衡,纠正其几何形状;⑧进行加固;⑨紧固地脚螺丝;⑩修复转子绕组;修复定子绕组。

七、轴承过热 

1.故障原因①滑脂过多或过少;②油质不好含有杂质;③轴承与轴颈或端盖配合不当(过松或过紧);④轴承内孔偏心,与轴相擦;⑤电动机端盖或轴承盖未装平;⑥电动机与负载间联轴器未校正,或皮带过紧;⑦轴承间隙过大或过小;⑧电动机轴弯曲。

 

2.故障排除①按规定加润滑脂(容积的1/3-2/3);②更换清洁的润滑滑脂;③过松可用粘结剂修复,过紧应车,磨轴颈或端盖内孔,使之适合;④修理轴承盖,消除擦点;⑤重新装配;⑥重新校正,调整皮带张力;⑦更换新轴承;⑧校正电机轴或更换转子。

八、电动机过热甚至冒烟 

1.故障原因①电源电压过高,使铁芯发热大大增加;②电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;③修理拆除绕组时,采用热拆法不当,烧伤铁芯;④定转子铁芯相擦;⑤电动机过载或频繁起动;⑥笼型转子断条;⑦电动机缺相,两相运行;⑧重绕后定于绕组浸漆不充分;⑨环境温度高电动机表面污垢多,或通风道堵塞;⑩电动机风扇故障,通风不良;定子绕组故障(相间、匝间短路;定子绕组内部连接错误)。

 2.故障排除①降低电源电压(如调整供电变压器分接头),若是电机Y、Δ接法错误引起,则应改正接法;②提高电源电压或换粗供电导线;③检修铁芯,排除故障;④消除擦点(调整气隙或挫、车转子);⑤减载;按规定次数控制起动;⑥检查并消除转子绕组故障;⑦恢复三相运行;⑧采用二次浸漆及真空浸漆工艺;⑨清洗电动机,改善环境温度,采用降温措施;⑩检查并修复风扇,必要时更换;检修定子绕组,消除故障。

 

第二章PLC基础

2.1PLC的定义

可编程逻辑控制器,一种数字运算操作的电子系统,专为在工业环境应用而设计的。

它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。

2.2PLC与继电器控制的区别

1.控制方式继电器的控制是采用硬件接线实现的,是利用继电器机械触点的串联或并联极延时继电器的滞后动作等组合形成控制逻辑,只能完成既定的逻辑控制。

PLC采用存储逻辑,其控制逻辑是以程序方式存储在内存中,要改变控制逻辑,只需改变程序即可,称软接线。

2.控制速度继电器控制逻辑是依靠触点的机械动作实现控制,工作频率低,毫秒级,机械触点有抖动现象。

PLC是由程序指令控制半导体电路来实现控制,速度快,微秒级,严格同步,无抖动。

3.延时控制继电器控制系统是靠时间继电器的滞后动作实现延时控制,而时间继电器定时精度不高,受环境影响大,调整时间困难。

PLC用半导体集成电路作定时器,时钟脉冲由晶体振荡器产生,精度高,调整时间方便,不受环境影响。

2.3PLC的工作原理

当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。

完成上述三个阶段称作一个扫描周期。

在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。

(一)输入采样阶段在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。

输入采样结束后,转入用户程序执行和输出刷新阶段。

在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。

因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。

(二)用户程序执行阶段在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。

在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。

即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。

在程序执行的过程中如果使用立即I/O指令则可以直接存取I/O点。

即使用I/O指令的话,输入过程影像寄存器的值不会被更新,程序直接从I/O模块取值,输出过程影像寄存器会被立即更新,这跟立即输入有些区别。

(三)输出刷新阶段当扫描用户程序结束后,PLC就进入输出刷新阶段。

在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。

这时,才是PLC的真正输出。

2.4PLC的应用分类

 目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。

  

1.开关量的逻辑控制  这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。

如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。

  

2.模拟量控制 在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。

为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。

PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。

  

3.运动控制 PLC可以用于圆周运动或直线运动的控制。

从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。

如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。

世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。

  

4.过程控制 过程控制是指对温度、压力、流量等模拟量的闭环控制。

作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。

PID调节是一般闭环控制系统中用得较多的调节方法。

大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。

PID处理一般是运行专用的PID子程序。

过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。

  

5.数据处理 现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。

这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。

数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。

  

6.通信及联网 PLC通信含PLC间的通信及PLC与其它智能设备间的通信。

随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。

新近生产的PLC都具有通信接口,通信非常方便。

2.5可编程序控制器的编程语言概述

1.步、转换和动作是SFC中的三种主要元件。

步是一种逻辑块,即对应于特定的控制任务的编程逻辑;动作是控制任务的独立部分;转换是从一个任务到另一个任务的原因。

FX系列PLC的输入继电器和输出继电器的元件号用八进制表示,八进制只有0-7这8个数字符号,遵循“逢八进一”的运算规则。

输入继电器是PLC接收外部输入的开关量信号的窗口。

PLC通过光电耦合器,将外部信号的状态读入并存贮在输入映象寄存器内,外部触点接通时对应的映象寄存器为“1”状态。

输入端外接的触点可以是常开的,也可以是常闭的,也可以是多个触点组成的串并联电路。

在梯形图中可以多次使用输入继电器的常开触点和常闭触点。

输入继电器的状态唯一地取决于外部输入信号的状态,不可能受用户程序的控制,因此在梯形图中绝对不能出现输入继电器的线圈。

本书用椭圆表示梯形图中的线圈

2.对于目前大多数PLC来说,SFC还仅仅作为组织编程的工具使用,尚需要其它编程语言将它转换为PLC的可执行的程序。

因此,通常只是将SFC作为PLC的辅助编程工具,而不是一种独立的编程语言。

1.PLC梯形图中的某些编程元件沿用了继电器这一名称,如输入继电器、输出继电器、内部辅助继电器等。

但是它们不是真实的物理继电器,而是在软件中使用的编程元件。

每一编程元件与PLC存贮器中元件映象寄存器的一个存贮器的一个存贮单元相对应。

该存贮单元如果为“1”状态,则表示梯形图中对应编程元件的线圈“通电”,其常开触点接通,常闭触点断开。

我们称这种状态是该编程元件的“1”状态,或该编程元件ON(接通)。

如果该贮存单元为“0”状态,对应的编程元件的线圈和触点的状态与上述相反,称该编程元件为“0”状态,或该编程元件OFF(断开)。

3.为了增强PLC的数学运算、数据处理、图形显示、报表打印等功能,方便用户的使用,许多在中型PLC都配备了PASCAL、BASIC、C等高级编程语言。

4.PLC梯形图中的某些编程元件沿用了继电器这一名称,如输入继电器、输出继电器、内

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2