液压系统升降机的设计资料.docx

上传人:b****1 文档编号:1683014 上传时间:2023-05-01 格式:DOCX 页数:37 大小:354.99KB
下载 相关 举报
液压系统升降机的设计资料.docx_第1页
第1页 / 共37页
液压系统升降机的设计资料.docx_第2页
第2页 / 共37页
液压系统升降机的设计资料.docx_第3页
第3页 / 共37页
液压系统升降机的设计资料.docx_第4页
第4页 / 共37页
液压系统升降机的设计资料.docx_第5页
第5页 / 共37页
液压系统升降机的设计资料.docx_第6页
第6页 / 共37页
液压系统升降机的设计资料.docx_第7页
第7页 / 共37页
液压系统升降机的设计资料.docx_第8页
第8页 / 共37页
液压系统升降机的设计资料.docx_第9页
第9页 / 共37页
液压系统升降机的设计资料.docx_第10页
第10页 / 共37页
液压系统升降机的设计资料.docx_第11页
第11页 / 共37页
液压系统升降机的设计资料.docx_第12页
第12页 / 共37页
液压系统升降机的设计资料.docx_第13页
第13页 / 共37页
液压系统升降机的设计资料.docx_第14页
第14页 / 共37页
液压系统升降机的设计资料.docx_第15页
第15页 / 共37页
液压系统升降机的设计资料.docx_第16页
第16页 / 共37页
液压系统升降机的设计资料.docx_第17页
第17页 / 共37页
液压系统升降机的设计资料.docx_第18页
第18页 / 共37页
液压系统升降机的设计资料.docx_第19页
第19页 / 共37页
液压系统升降机的设计资料.docx_第20页
第20页 / 共37页
亲,该文档总共37页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

液压系统升降机的设计资料.docx

《液压系统升降机的设计资料.docx》由会员分享,可在线阅读,更多相关《液压系统升降机的设计资料.docx(37页珍藏版)》请在冰点文库上搜索。

液压系统升降机的设计资料.docx

液压系统升降机的设计资料

液压系统升降机的设计

职称

江苏城市职业学院

毕业设计(论文)

届)

设计(论文)题目

办学点(系)

专业

班级

学号

学生姓名

指导教师

液压系统升降机的设计

摘要

该设计的题目是液压系统升降机的设计,它主要包括三个部分的内容:

主机参数的确定,液压系统的设计,控制部分的设计。

在该设计中将液压系统的设计做为主要的内容进行设计,主机已根据升降台工作时的主要工作部件进行大概的估算设计。

液压系统的设计又主要包括了动力源、控制元件、执行元件、辅助元件的设计。

控制部分的设计为附加部分,主要设计控制电路图。

同时参照现有液压车的设计,结合液压车设计生产标准进行合理的选型计算。

关键词:

升降机;液压系统;执行元件

、八、-—

刖言5

第一章升降机机械机构6

1.1升降机机械结构形式和运动机理6

1.1.1机械结构型式6

1.1.2升降机的运动机理6

1.2升降机机械结构和零件参数4

1.2.1升降机结构参数的选择和确定4

1.2.2升降机上顶板、支架和底板结构7

1.3升降机系统的设计要求9

第二章执行元件速度和载荷10

2.1执行元件类型、数量和安装位置10

2.2速度和载荷计算10

2.2.1速度计算及速度变化规律10

第三章液压系统主要参数的确定12

3.1系统压力的初步确定12

3.2液压执行元件的主要参数12

3.2.1液压缸的作用力12

3.2.2缸筒内径的确定12

3.2.3活塞杆直径的确定12

3.2.4液压缸壁厚,最小导向长度,液压缸长度的确定13

第四章液压系统方案的选择和论证14

4.1油路循环方式的分析和选择14

4.2开式系统油路组合方式的分析选择14

4.3调速方案的选择15

4.4液压系统原理图的确定15

第五章液压元件的选择计算及其连接16

5.1油泵和电机选择16

5.1.1泵的额定流量和额定压力16

5.1.2电机功率的确定17

5.1.3连轴器的选用18

5.2控制阀的选用18

5.2.1压力控制阀19

5.2.2流量控制阀19

5.2.3方向控制阀19

5.3管路,过滤器,其他辅助元件的选择计算20

5.3.1管路20

5.3.2过滤器的选择21

5.3.3辅件的选择21

5.4液压元件的连接22

5.4.1液压装置的总体布置22

5.4.2液压元件的连接22

5.5油箱的容积22

5.5.1按使用情况确定油箱容积22

第六章液压缸的结构设计23

6.1缸筒23

6.1.1.缸筒与缸盖的连接形式23

6.1.2强度计算24

6.1.3缸筒材料及加工要求24

6.1.4缸盖材料及加工要求24

6.2活塞和活塞杆25

6.2.1活塞和活塞杆的结构形式25

6.2.2活塞、活塞杆材料及加工要求26

6.3活塞杆导向套26

6.4排气装置27

6.5密封结构的设计选择27

第七章液压系统性能验算28

总结30

致谢31

参考文献32

液压升降机是一种升降性能好,适用范围广的货物举升机构,可用于生产流水线高度差设备之间的货物运送,物料上线,下线,共件装配时部件的举升,大型机库上料,下料,仓储装卸等场所,与叉车等车辆配套使用,以及货物的快速装卸等。

它采用全液压系统控制,采用液压系统有以下特点:

在同等的体积下,液压装置能比其他装置产生更多的动力,在同等的功率下,液压装置的体积小,重量轻,功率密度大,结构紧凑,液压马达的体积和重量只有同等功率电机的12%液压装置工作比较平稳,由于重量轻,惯性小,反应快,液压装置易于实现快速启动,制动和频繁的换向。

液压装置可在大范围内实现无级调速(调速范围可达到2000),还可以在运行的过程中实现调速。

液压传动易于实现自动化,他对液体压力,流量和流动方向易于进行调解或控制。

液压装置易于实现过载保护。

液压元件以实现了标准化,系列化,通用化,压也系统的设计制造和使用都比较方便。

第一章连杆零件机械加工工艺规程的编制

1.1升降机机械结构形式和运动机理

1.1.1机械结构型式

根据升降机的平台尺寸40002000mm,参考国内外同类产品的工艺参数可知,该

升降机宜采用单双叉机构形式:

即有两个单叉机构升降台合并而成,有四个同步液压缸

做同步运动,以达到升降机升降的目的。

其具体结构形式为:

1.1.2升降机的运动机理

升降机的基本运动机理如下图所示:

图1.2升降机的基本运动机理图

如图1.3,两支架在0点铰接,支架1上下端分别固定在上、下板面上,通过活塞杆的伸缩和铰接点0的作用实现货物的举升。

根据以上分析,升降机的运动过程可以叙述如下:

支架2、3为升降机机构中的固定支架,他们与底板的铰接点O2Q3做不完整的圆周运动,支架1、4为活动支架,他们在液压缸的作用下由最初的几乎水平状态逐渐向后来的倾斜位置运动,在通过支架之间

的绞合点带动2、3也不断向倾斜位置运动,以使升降机升降,如图1.3。

图1.3升降机的运动过程图

初态时,上下底板处于合闭状态,支架1、2、3、4可近似看作为水平状态,随着液压油不断的输入到液压缸中,活塞杆外伸,将支架2顶起,支架2上升时,由于绞合

点o的作用使支架1运动,1与液压缸相连,从而液压缸也开始运动,通过一系列的相互运动和作用,使上顶板上升,当上升到指定高度时,液压缸停止运动,载荷便达到指疋咼度。

1.2升降机机械结构和零件参数

1.2.1升降机结构参数的选择和确定

根据升降台的工艺参数和他的基本运动机理来确定支架1、2、3、4的长度和截面

形状。

0203之间的距离和液压缸的工作行程。

x设O2O3=x(0:

x,则1、2、3、4支架的长度可以确定为h=2,(h1.5m),

2

即支架和地板垂直时的高度应大于1.5m,这样才能保证其最大升降高度达到1.5m,其运

动过程中任意两个位置的示意图表示如下:

图1.4运动过程示意图

设支架1、2和3、4都在其中点处绞合,液压缸顶端与支架绞合点距离中点为t

根据下面根据几何关系求解上述最佳组合值。

初步分析:

x值范围为0:

x;:

1x,取值偏小,则上顶板02,03点承力过大,还会使支架的长度过长,造成受力情况不均匀。

X值偏小,则会使液压缸的行程偏大,并且会

造成整个机构受力情况不均匀。

在该设计中,可以选择几个特殊值:

x=0.4m,x=0.6m,x=0.8m,分别根据数学关系计算出h和t。

然后分析上下顶板的受力情况。

选取最佳组合值便可以满足设计要求。

x=0.4

支架长度为h=2-x/2=1.8m

O2C=h/2=0.9m

液压缸的行程设为I,升降台上下顶板合并时,根据几何关系可得到:

l+t=0.9

升降台完全升起时,有几何关系可得到:

222222

1.8+0.995-1.5_(0.9+t)+0.955+(21)

cos■二=

-2x1.8x0.9952x(0.9+t)x2l

联合上述方程求得:

t=0.355m

l=0.545m

即液压缸活塞杆与2杆绞合点与2杆中心距为0.355m.活塞行程为0.545m

x=0.6

支架长度为=2-x/2=1.7m

O2C=h/2=0.85m

液压缸的行程设为l,升降台上下顶板合并时,根据几何关系可得到:

l+t=0.9

升降台完全升起时,有几何关系可得到:

222

1.72+0.82-1.52(0.85+t)+0.8-(2l)

cos=

2x1.7x0.82汽0.8汉(0.85+t)

联合上述方程求得:

t=0.32m

l=0.53m

即液压缸活塞杆与2杆绞合点与2杆中心距为0.32m.活塞行程为0.53m

x=0.8

支架长度为=2-x/2=1.6m

O2C=h/2=0.8m

液压缸的行程设为l,升降台上下顶板合并时,根据几何关系可得到:

l+t=0.9

升降台完全升起时,有几何关系可得到:

1.62+0.5572-1.52(0.8十t)2+0.5572—(2l)2

cos=

2^1.6^0.5572汉(0.8+t)汇0.557

联合上述方程求得:

t=0.284m

l=0.516m

即液压缸活塞杆与2杆绞合点与2杆中心距为0.284m.活塞行程为0.516m

现在对上述情况分别进行受力分析:

(1)x=0.4m,受力图如下所示:

(2)x=0.6m,受力图如下所示

(3)x=0.8m,受力图如下所示

图1.5受力图

比较上述三种情况下的载荷分布状况,x去小值,则升到顶端时,两相互绞合的支架间的间距越大,而此时升降台的载荷为均布载荷,有材料力学理论可知,此时两支架中点出所受到的弯曲应力为最大,可能会发生弯曲破坏,根据材料力学中提高梁的弯曲强度的措施知,合理安排梁的受力情况,可以降低Mmax值,从而改善提高其承载能力。

分析上述x=0.4m.x=0.6m,x=0.8m时梁的受力情况和载荷分布情况,可以选择第二种

情况,即x=0.6m时的结构作为升降机固定点O2O3的最终值,由此便可以确定其他相关参数如下:

t=0.32m.l=0.53m,h=1.7m

1.2.2升降机上顶板、支架和底板结构

1.上顶板结构

上顶板和载荷直接接触,其结构采用由若干根相互交叉垂直的热轧槽刚通过焊接形式焊接而成,然后在槽钢的四个侧面和上顶面上铺装4000X2000x3mm的汽车板,

沿平台的上顶面长度方向布置4根16号热轧槽钢,沿宽度方向布置6根10号热轧槽钢,组成上图所示的上顶板结构。

在最外缘延长度方向加工出安装上下支架的滑槽。

以便上下支架的安装。

滑槽的具体尺寸根据上下支架的具体尺寸和结构而定。

沿长度方向的4根16号热轧槽刚的结构参数为

2

hbdtrr1=160658.51010.05.0mm,截面面积为25.162cm,理论重量为

19.752kg/m,抗弯截面系数为117cm3。

沿宽度方向的6根10号热轧槽刚的结构参数为hbdtrr1=100485.38.58.54.2mm,截面面积为12.784cm2,理论重量为

10.007kg/m,抗弯截面系数为39.7cm3。

其质量分别为:

4根16号热轧槽刚的质量为:

m=4419.752=316kg

6根10号热轧槽刚的质量为:

m2=6210.007=120kg

菱形汽车钢板质量为:

m3=4225.6=204.8kg

2.支架的结构

支架由8根形状基本相同的截面为矩形的钢柱组成,在支架的顶端和末端分别加工

出圆柱状的短轴,以便支架的安装。

支架在升降机结构中的主要功能为载荷支撑和运动转化,将液压缸的伸缩运动,通过与其铰合的支点转化为平台的升降运动,支架的结构除应满足安装要求外,还应保证有足够的刚度和强度,一时期在升降运动中能够平稳安全运行。

架在运动过程中受力情况比较复杂,它与另一支架铰合点给予底座的固定点的受里均为大小和方向为未知的矢量,故该问题为超静定理论问题,已经超出本文的讨论范围。

本着定性分析和提高效率的原则,对支架所受的力进行分析,可以看出与液压缸顶杆联结点的力为之家所受到的最主要的力,它不仅受液压缸的推力,而且还将受到上顶班所传递的作用力,因此,与液压缸顶杆相连接的支架所受到的上顶板的力为它所受到的最主要的力,在此,将其他的力忽略,只计算上顶板承受的由载荷和自重所传递的

载荷力。

计算简图如下所示:

图1.11计算简图

 

N•所产生的弯矩为:

M鼻NL

N每个支架的支点对上顶板的作用力N

L液压缸与支架铰合点距支点之间的距离m

代入数据:

M=38480.53=2039Nm

假定改支架为截面为长为a,宽为b的长方形,则其强度应满足的要求是:

式中:

M

支架上所受到的弯矩Nm

W

截面分别为a,b的长方形抗弯截面系数

Jmax

J所选材料为碳素结构钢Q235二s=235MPa

将数据代入求得:

a2b一78cm3

上式表明:

只要街面为a,b的长方形满足条件a2b亠78cm3,则可以满足强度要求,取a=5cm,b=3.5cm,则其a287.5crn78Cm符合强度要求。

这些钢柱的质量为:

m4=8abh「=83.5510°7.91031.7=188Kg

支架的结构还应该考虑装配要求,液压缸活塞杆顶端与支架采用耳轴结构连接,因此应在两支架之间加装支板,以满足动力传递要求。

3.升降机底座参数

升降机底座在整个机构中支撑着平台的全部重量,并将其传递到地基上,他的设计

重点是满足强度要求即可,保证在升降机升降过程中不会被压溃即可,不会发生过大变形,其具体参数见装配图。

1.3升降机系统的设计要求

本升降台对液压系统的设计要求可以总结如下:

升降台的升降运动采用液压传动,可选用远程或无线控制,升降机的升降运动由液压缸的伸缩运动经转化而成为平台的起降,其工作负载变化范围为0—2500Kg,负载平稳,工作过程中无冲击载荷作用,运行速度较低,液压执行元件有四组液压缸实现同步运动,要求其工作平稳,结构合理,安全性优良,使用于各种不同场合,工作精度要求一般。

第二章执行元件速度和载荷

2.1执行元件类型、数量和安装位置

类型选择:

表2.1执行元件类型的选择

运动形式小

往冥直线运动卡

回鹑运动4

往复摆动*

短行程戏

长行程存

低速心

摆动液压2达存

执行元件的类型心

活塞缸Q

柱塞缸討

港压曰达和丝杠螺母机枸心

高速液圧

2达"

根据上表选择执行元件类型为活塞缸,再根据其运动要求进一步选择液压缸类型为双作用单活塞杆无缓冲式液压缸,其符号为:

图2.1液压缸

数量:

该升降平台为双单叉结构,故其采用的液压缸数量为4个完全相同的液压缸,其运动完全是同步的,但其精度要求不是很高。

安装位置:

液压缸的安装方式为耳环型,尾部单耳环,缸体可以在垂直面内摆动,耳环位置为图1.3所示的前后两固定支架之间的横梁之上,横梁和支架组成为一体,通过横梁活塞的推力逐次向外传递,使升降机升降。

2.2速度和载荷计算

2.2.1速度计算及速度变化规律

参考国内升降台类产品的技术参数可知。

最大起升高度为1500mm时,其平均起升时间为45s,就是从液压缸活塞开始运动到活塞行程末端所用时间大约为45s,设本升降台的最小气升降时间为40s最大起升时间为50s,由此便可以计算执行元件的速度v:

l

v=一

t

式中:

v执行元件的速度m/s

L液压缸的行程m

t时间s

当t=40s时:

Vmax二丄-°^3.°1325m/S

tmin40

当t=50s时:

Vmin0.01m6s/

t40

液压缸的速度在整个行程过程中都比较平稳,无明显变化,在起升的初始阶段到运行稳定阶段,其间有一段加速阶段,该加速阶段加速度表较小,因此速度变化不明显,形成终了时,有一个减速阶段,减速阶段加速度亦比较小,因此可以说升降机在整个工作过程中无明显的加减速阶段,其运动速度比较平稳。

第三章液压系统主要参数的确定

3.1系统压力的初步确定

液压缸的有效工作压力可以根据下表确定:

表3.1液压缸牵引力与工作压力之间的关系

牵引力F

5-10^

10-20^

20-30*^

30-盼

工作压力P(NIPa)"

<0.8-10P

1.5-加

2.S-3*3

3-4^

4^54

>5-2

由于该液压缸的推力即牵引力为10KN根据上表,可以初步确定液压缸的工作压力为:

p=2MPa。

3.2液压执行元件的主要参数

3.2.1液压缸的作用力

液压缸的作用力及时液压缸的工作是的推力或拉力,该升降台工作时液压缸产生向

上的推力,因此计算时只取液压油进入无杆腔时产生的推力:

回路特点

背压值

违由路调速

1-2x10

逬油路调速回油装被压阀

2-5x10

回抽路调速

6-10x10

表3.2系统被压经验数据

322缸筒内径的确定

液压缸的内径,活塞的外径要取标注值是因为活塞和活塞杆还要有其它的零件相互配合,如密圭寸圈等,而这些零件已经标准化,有专门的生产厂家,故活塞和液压缸的内径也应该标准化,以便选用标准件。

3.2.3活塞杆直径的确定

1.活塞杆直径根据受力情况和液压缸的结构形式来确定

2.活塞杆的强度计算

3.稳定性校核324液压缸壁厚,最小导向长度,液压缸长度的确定

1.液压缸壁厚的确定

液压缸壁厚又结构和工艺要求等确定,一般按照薄壁筒计算。

2.最小导向长度

活塞杆全部外伸时,从活塞支撑面重点到导向滑动面中点的距离为活塞的最小导向长度H,如下图所示,如果最小导向长度过小,将会使液压缸的初始挠度增大,影响其稳定性,因此设计时必须保证有最小导向长度,对于一般的液压缸,液压缸最大行程为L,缸筒直径为D时,最小导向长度为:

72cm

 

图3.1液压缸运动示意图

活塞的宽度一般取B=(0.6-0.1)D,导向套滑动面长度A,在D<80mm时,取

A=(0.6-1.0)D,在D=80mm时,取A=(0.6-1.0)d,当导向套长度不够时,不宜过分增大

A和B,必要时可在导向套和活塞之间加一隔套,隔套的长度由最小导向长度H确定。

第四章液压系统方案的选择和论证

4.1油路循环方式的分析和选择

油路循环方式可以分为开式和闭式两种,其各自特点及相互比较见下表:

表4.1开式与闭式的比较

油液由叶循环方式卫

闭式卫

散热条件卫

技方便』旦油禰空大卫

熱子熏用泵执油冷却*

抗污染性心

可用压力油箱或其它改动r

较妊但油港过滤要求高心

系统效率心

管路压力损失较大,用节溢调速敢率低,

管路压力损失较小,谷积调速效率哥

限速制动形式Q

用平衡阀进行能耗限速,用制动阀进行施耗制动何弓1起油港发熱心

液压泵由电机拖动时』艮速及制动过程中拖动电机能向电网输电,回收部

分能量农

其他心

对泵的自厠折厦求较高Q

对主泵的自吸性能要求较低Q

油路循环方式的选择主要取决于液压系统的调速方式和散热条件。

比较上述两种方

式的差异,再根据升降机的性能要求,可以选择的油路循环方式为开式系统,因为该升降机主机和液压泵要分开安装,具有较大的空间存放油箱,而且要求该升降机的结构尽可能简单,开始系统刚好能满足上述要求

油源回路的原理图如下所示:

图4.1油源回路原理图

4.2开式系统油路组合方式的分析选择

当系统中有多个液压执行元件时,开始系统按照油路的不同连接方式又可以分为串联,并联,独联,以及它们的组合一复联等。

串联方式是除了第一个液压元件的进油口和最后一个执行元件的回油口分别与液压泵和油箱相连接外,其余液压执行元件的进,出油口依次相连,这种连接方式的特点是多个液压元件同时动作时,其速度不随外载荷变化,故轻载时可多个液压执行元件同

时动作

4.3调速方案的选择

调速方案对主机的性能起决定作用,选择调速方案时,应根据液压执行元件的负载特性和调速范围及经济性等因素选择。

常用的调速方案有三种:

节流调速回路,容积调速回路,容积节流调速回路。

本升降机采用节流调速回路,原因是该调速回路有以下特点:

承载能力好,成本低,调速范围大,适用于小功率,轻载或中低压系统,但其速度刚度差,效率低,发热大。

4.4液压系统原理图的确定

初步拟定液压系统原理图如下所示;见下图:

图4.2液压系统原理图

第五章液压元件的选择计算及其连接

5.1油泵和电机选择

5.1.1泵的额定流量和额定压力

1.泵的额定流量

泵的流量应满足执行元件最高速度要求,所以泵的输出流量应根据系统所需要的最大流量和泄漏量来确定:

qp-KQaxn

式中:

qp泵的输出流量L/min

K系统泄漏系数一般取K=1.1-1.3

Qmax液压缸实际需要的最大流量L/min

n执行元件个数

代入数据:

qp_1.15.16=422.7/

对于工作过程中始终用节流阀调速的系统,在确定泵的流量时,应再加上溢流阀的最小溢流量,一般取3L/min:

qp_22.7旨215.7/m

2.泵的最高工作压力

泵的工作压力应该根据液压缸的工作压力来确定,即

PpPax+瓦也P

式中:

Pp泵的工作压力Pa

Pmax执行元件的最高工作压力Pa

'P进油路和回油路总的压力损失。

初算时,节流调速和比较简单的油路可以取0.2-0.5MPa,对于进油路有调速阀和

管路比较复杂的系统可以取0.5-1.5MPa。

代入数据:

Pp—20.5-2M5Pa

考虑到液压系统的动态压力及油泵的使用寿命,通常在选择油泵时,其额定压力比

工作压力Pp大25%—60%,即泵的额定压力为3.125MPa—4.0MPa,取其额定压力为

4MPa。

5.1.2电机功率的确定

液压系统实际需要的输入功率是选择电机的主要依据,由于液压泵存在容积损失和

机械损失,为满足液压泵向系统输出所需要的的压力和流量,液压泵的输入功率必须大于它的输出功率,液压泵实际需要的输入功率为:

P_」Pq^

i61076107m

式中:

P液压泵的实际最高工作压力Pa

q液压泵的实际流量L/min

P液压泵的输入功率KW

q液压泵向系统输出的理论流量L/min

n液压泵的总效率

m液压泵的机械效率

610换算系数

6

代入数据:

P二2.510257=1.64KW

6汉10汉0.65

电机的功率也可以根据技术手册找,根据《机械设计手册》第三版,第五卷,可以

查得电机的驱动功率为4KW,本设计以技术手册的数据为标准,取电机的功率为

4KW。

根据上述计算过程,现在可以进行电机的选取,本液压系统为一般液压系统,通常

选取三相异步电动机就能够满足要求,初步确定电机的功率和相关参数如下:

型号:

Y-112M-2额定功率:

4KW满载时转速:

2890r/min电流:

8.17A

效率:

85.5%

净重:

45Kg

额定转矩:

2.2Nm

电机的安装形式为B5(V1)型,其参数为:

基座号:

112M极数:

4国际标准基座号:

28F215

液压泵为三螺杆泵,其参数如下:

规格:

De2L/h

256

标定粘度:

°E50

10

转速:

r/min

2900

压力:

MPa

4

流量:

L/min

26.6

功率:

KW

4

吸入口直径:

mm

25

排出口直径:

mm

20

重量:

Kg

11

允许吸上真空咼度:

m(H2O)!

说明:

三螺杆泵的使用、安装、维护要求。

使用要求:

一般用于液压传动系统中的三螺杆泵多采用20号液压油或40号液压油,其粘度范围为17-23mm2/s(:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2