垂直墙背挡土墙土压力分布研究.docx

上传人:b****2 文档编号:16991396 上传时间:2023-07-21 格式:DOCX 页数:7 大小:17.14KB
下载 相关 举报
垂直墙背挡土墙土压力分布研究.docx_第1页
第1页 / 共7页
垂直墙背挡土墙土压力分布研究.docx_第2页
第2页 / 共7页
垂直墙背挡土墙土压力分布研究.docx_第3页
第3页 / 共7页
垂直墙背挡土墙土压力分布研究.docx_第4页
第4页 / 共7页
垂直墙背挡土墙土压力分布研究.docx_第5页
第5页 / 共7页
垂直墙背挡土墙土压力分布研究.docx_第6页
第6页 / 共7页
垂直墙背挡土墙土压力分布研究.docx_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

垂直墙背挡土墙土压力分布研究.docx

《垂直墙背挡土墙土压力分布研究.docx》由会员分享,可在线阅读,更多相关《垂直墙背挡土墙土压力分布研究.docx(7页珍藏版)》请在冰点文库上搜索。

垂直墙背挡土墙土压力分布研究.docx

垂直墙背挡土墙土压力分布研究

垂直墙背挡土墙土压力分布研究

垂直墙背挡土墙土压力分布研究

摘要:

在填土水平且无粘性条件下,分析垂直墙背挡土墙的主、被动土压力分布。

通过研究极限状态土体内主应力拱的应力,得到挡土墙的土压力系数。

取滑动土楔内水平薄层土体单元进行分析,推求挡土墙土压力的分布及合力的计算公式,并用试验结果验证。

研究表明,本文所得土压力合力与库仑解相等,但土压力分布并非直线,主动土压力的合力作用点高度大于三分之一墙高,而被动土压力的合力作用点高度小于三分之一墙高。

 

关键词:

挡土墙土压力主应力拱

 

在经典土压力理论中,认为土压力呈线性分布,而工程实测结果和模型试验表明,土压力是曲线分布[1,2]。

本文引用主应力拱的概念,利用水平层分析法,对垂直墙背挡土墙后填土水平且无粘性条件下的土压力分布进行研。

1主应力拱及侧向土压力系数

1.1挡土墙模型为分析方便,取如图1所示的挡土墙模型,假定:

①ab、cd是二刚性平行墙背,相距B,墙面粗糙;②两墙之间填土水平且无粘性;③在外力作用下,两墙产生相向(背)运动,土体达到被(主)动极限状态。

1.2大主应力拱应力和理论被动土压力系数在挡土墙模型中,因问题的对称性,两墙中点E的大主应力σ1为水平,而靠近边墙的A、C点,因边壁摩擦影响,大主应力发生偏斜并与墙面形成θ=45°+φ/2的夹角[3],这就使两墙之间的大主应力迹线成为一条对称的下凸曲线,称为大主应力拱,如图2所示,其中φ为土体的内摩擦角。

大主应力拱上E点和A、C点的应力状态可用莫尔应力圆表示。

根据图1,由A点微分单元水平力及垂直力的平衡条件可得

 

(1)

 

(2)

将式

(1)两端同除以小主应力σ3,并认为土体处于朗金被动状态,即σ1/σ3等于朗金被动土压力系数Kp,式

(1)变为

 

(3)

由图2可知:

σh=σ1+σ3-σv,将其代入式(3),得

 

(4)

式(3)除以式(4),得到理论被动土压力系数

 

(5)

式中:

σh、σv、τ分别为A点的水平应力、垂直应力和剪应力。

对于光滑墙面,θ=90°,则Kp1=Kp;对于粗糙墙面,θ=45°+φ/2,则Kp1=(1+sin2φ)/(1-sin2φ)。

若θ为大主应力拱内某点大主应力与铅垂直的夹角,以上各式即表示该点的应力及其比值关系。

1.3大主应力拱形状和实用被动土压力系数由图2可见,大主应力拱单元的边界是由小主应力面形成的曲面,为了满足力矩平衡条件,大主应力拱内的应力应保持为常量。

假定土拱单元的厚度和土的容重不变,则大主应力拱的形状为一条悬链线,令墙土摩擦角δ等于土体的内摩擦角φ,其方程为[4,5]

 

(6)

在墙壁处,x=±1,其斜率为

 

(7)

由式(7)可以求得不同φ时的拱形参数a,结果见表1。

根据φ及其对应的a,可由式(6)绘出大主应力拱的曲线,由式(3)~式(5)绘出σh/σ3、σv/σ3、σh/σv应力比值曲线,见图3。

为了实用,对不同的φ,利用式(4)求大主应力拱内平均垂直应力σav与σ3的比值,经数值分析,当φ=0°~40°时,σav/σ3=1.00~1.24。

则实用的被动土压力系数为

 

(8)

 

垂直墙背挡土墙后的土体到达被动极限状态时,忽略墙背对土体的影响,土体内破裂面上各点的应力状态与图1中E点的应力状态相同,三角形滑动土楔内的大主应力拱近似为上述曲线之半,挡土墙被动土压力系数可由式(8)计算。

 

表1不同内摩擦角时的拱形参数

 

内摩擦角φ/o

拱形参数a

 

0

10

20

30

40

1.135

1.311

1.532

1.820

2.218

 

(a)拱曲线

(b)被动状态时拱内应力比值曲线

 

图3拱曲线及应力比值曲线

1.4小主应力拱及主动土压力系数由分析可知,土体模型中的二平行墙产生向背运动,并使土体达到主动极限状态时,小主应力迹线形成的小主应力拱与大主应力拱有完全一样的形状,此时,两平行墙给土体的剪应力向上,图2中的大主应力拱变成了小主应力拱,莫尔应力圆中的σh和σv互换,拱内应力及其关系为

 

(9)

 

(10)

 

(11)

 

(12)

理论主动土压力系数为

 

(13)

式中:

Ka为朗金主动土压力系数;θ为小主应力与铅垂直的夹角;其余符号意义同前。

Ka1和Kp1互为倒数。

实用主动土压力系数为

 

(14)2土压力公式

2.1被动土压力被动极限状态下,墙后滑动土楔如图4所示,β为土体内破裂面与铅垂面的夹角。

在楔体内某一深

 

图4土契内的水平层单元

度h处,取一水平薄层单元,其上的作用力包括平均垂直土压力(平均垂直应力)q、单元重力dw、墙体和稳定土体对土楔的分布作用力p1、p2。

由水平薄层单元水平力的平衡条件得

 

(15)

由竖直力的平衡条件得

 

(16)

略去二阶微量,注意到p1=Kpwq/cosδ,将式(15)代入,式(16)变为

 

(17)

式中:

γ为回填土的重度;D=1-KpwG,G=[tan(β-φ)-tanδ]/tanβ。

为简单起见,取边界条件h=0时,q=0,得微分方程(16)的特解

 

(18)

被动土压力的分布p与p1大小相等、方向相反:

 

(19)

对式(19)进行积分,得被动土压力的合力

 

(20)

由力矩法可求得合力作用点到墙底的距离

 

(21)

为使合力P最大,令dP/d(tanβ)=0,得破裂面与铅垂面夹角β之值

 

(22)

式中:

n1=1-tanδtanφ;n2=tanδ+tanφ;n3=tanφ。

2.2主动土压力分析表明,主动状态时的土压力分布、合力以及其作用点高度的计算表达式与被动土压力完全相同,但此时需用Kaw代替Kpw,G和tanβ的计算式应分别改为

 

(23)

 

(24)

3验证分析

利用前苏联学者查嘎列尔[1]的主动土压力试验数据,对本文公式进行验证分析。

试验用挡土墙高4.0m,墙后填土为海沙,φ=37°,γ=18kN/m3,δ=27°~37°,主动极限状态时测得的主动土压力分布如图5中虚线,合力作用点高度为1.6m。

利用本文公式,取δ=27°所求主动土压力分布如图中实线,合力作用点高度为1.8m。

两条曲线十分接近。

文中公式所得主动和被动土压力的合力与库仑解相等,但合力作用点到墙底的距离不是定值H/3。

主动土压力呈凸曲线分布,其合力作用点高度为(1/3~1/2)H,与文献[1]中的许多试验结果相吻合。

被动土压力呈凹曲线分布,其合力作用点高度小于H/3。

4结论

(1)大、小主应力拱形状相同,均可用悬链线表示。

理论主动土压力系数和理论被动土压力系数互为倒数。

(2)根据假定,文中公式可使用于填土水平且无粘性的垂直墙背重力式挡土墙。

主动和被动土压力的计算公式形式相同,但参数不同。

(3)水平层分析法以库仑假定为前提,故本文所得土压力合力与库仑解相等,但合力与侧压力系数无关。

(4)墙背垂直时,主动土压力呈凸曲线分布,其合力作用点高度大于H/3;被动土压力呈凹曲线分布,其合力作用点高度小于H/3。

参考文献:

[1]克列因.散粒体结构力学[M].陈万佳译,北京:

人民交通出版社,1983,234-248.

[2]顾慰慈.挡土墙土压力计算[M].北京:

中国建材工业出版社,2000,167-168.

[3]KelloggCG.VerticalEarthLoadsOnBuriedEngineeredWorks[J].JournalofGeotechnicalEngineering,1993,119(3):

487-506.

[4]KingsleyHaropWilliams.Archinarching[J].JournalofGeotechnicalEngineering,1989,115(3):

415-419.

[5]RichardLHandy.Thearchinsoilarching[J.JournalofGeotechnicalEngineering,1985,111(3):

302~318

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2