基于51单片机超声波测距系统方案.docx

上传人:b****2 文档编号:17049389 上传时间:2023-07-21 格式:DOCX 页数:30 大小:351.96KB
下载 相关 举报
基于51单片机超声波测距系统方案.docx_第1页
第1页 / 共30页
基于51单片机超声波测距系统方案.docx_第2页
第2页 / 共30页
基于51单片机超声波测距系统方案.docx_第3页
第3页 / 共30页
基于51单片机超声波测距系统方案.docx_第4页
第4页 / 共30页
基于51单片机超声波测距系统方案.docx_第5页
第5页 / 共30页
基于51单片机超声波测距系统方案.docx_第6页
第6页 / 共30页
基于51单片机超声波测距系统方案.docx_第7页
第7页 / 共30页
基于51单片机超声波测距系统方案.docx_第8页
第8页 / 共30页
基于51单片机超声波测距系统方案.docx_第9页
第9页 / 共30页
基于51单片机超声波测距系统方案.docx_第10页
第10页 / 共30页
基于51单片机超声波测距系统方案.docx_第11页
第11页 / 共30页
基于51单片机超声波测距系统方案.docx_第12页
第12页 / 共30页
基于51单片机超声波测距系统方案.docx_第13页
第13页 / 共30页
基于51单片机超声波测距系统方案.docx_第14页
第14页 / 共30页
基于51单片机超声波测距系统方案.docx_第15页
第15页 / 共30页
基于51单片机超声波测距系统方案.docx_第16页
第16页 / 共30页
基于51单片机超声波测距系统方案.docx_第17页
第17页 / 共30页
基于51单片机超声波测距系统方案.docx_第18页
第18页 / 共30页
基于51单片机超声波测距系统方案.docx_第19页
第19页 / 共30页
基于51单片机超声波测距系统方案.docx_第20页
第20页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于51单片机超声波测距系统方案.docx

《基于51单片机超声波测距系统方案.docx》由会员分享,可在线阅读,更多相关《基于51单片机超声波测距系统方案.docx(30页珍藏版)》请在冰点文库上搜索。

基于51单片机超声波测距系统方案.docx

基于51单片机超声波测距系统方案

摘要1

一.绪论2

二.超声波测距的原理3

2.1超声波的基本理论3

2.2超声波测距系统原理7

三.系统硬件的具体设计与实现8

3.1系统原理和框图8

3.2功能模块的设计8

3.2.1单片机介绍8

3.2.1.1AT89C51管脚说明9

3.2.1.2AT89C51主要特性10

3.2.1.3芯片擦除11

3.2.2超声波测距模块HC-SR0411

3.2.2.1产品特点11

3.2.2.2基本原理12

3.2.2.3电气参数12

3.2.2.4超声波时序图12

四.系统软件设计13

1.程序设计思路13

2.程序流程图13

3.程序14

五.总结15

六.致16

七.参考文献17

八.附录18

1.原理图18

2.PCB图19

3.主程序19

摘要

基于传统的测距方法在很多特殊场合:

如带腐蚀的液体,强电磁干扰,有毒等恶劣条件下,测量距离存在不可克服的缺陷,超声波测距能很好的解决此类的问题。

本系统主要以AT89C51单片机为核心,结合超声波测距模块HC-SR04、数码管、蜂鸣器等硬件平台,对超声波测距系统的原理、数码管显示、单片机的应用等进行了分析和验证。

关键词:

超声波测距模块,AT89C51,数码管。

 

Abstract

Inmanyspecialoccasions,traditionalmeasuringdistancemethodsbasedontheexistenceofinsurmountabledistancemeasuringdefects,suchasthemeasurementofcorrosionintheliquidwithstrongelectromagneticinterference,toxicandotheradverseconditions.Theultrasonicrangecanbeaverygoodsolutiontotheproblem.ThissystemmainlyusesAT89C51microcontrollerasthecore,hardwareplatformcombinedwiththeHC-SR04ultrasonicrangingmodule,digitaltube,buzzeretc.Analyzedandvalidatedtheprincipleofultrasonicran,digitaltube’sdisplay,theapplicationofsingle-chipmicrocomputeretc.

 

Keywords:

ultrasonicrangingmodule,AT89C51,Digitaltube.

一.绪论

随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。

但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。

展望未来,超声波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:

研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。

无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。

随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。

在新的世纪里,面貌一新的测距仪将发挥更大的作用。

在基于传统的测力距离存在不可克服的缺陷。

例如,液面测量就是一种距离测量,传统的电极法是采用差位分布电极,通过给电或脉冲来检测液面,电极长期浸泡于水中或其他液体中,极易被腐蚀、电解,失去灵敏性。

由于超声波具有强度大,方向性好等特点,利用超声波测量距离就可以解决这些问题,因此超声波测量距离技术在工业控制、勘探测量、机器人定位和安全防等领域得到了广泛的应用。

超声波测距电路可以由传统的模拟或者数字电路构建,但是基于这些传统电路构建的系统往往可靠性差,调试困难,可扩展性差,所以基于单片机的超声波测距系统被广泛的应用。

通过简单的外围电路发生和接收超声波,单片机通过采样获取到超声波的传播时间,用软件来计算出距离,其测量电路小巧,精度高,反映速度快,可靠性好。

二.超声波测距的原理

2.1超声波的基本理论

超声波是一门以物理、电子、机械、以及材料科学为基础的、各行各业都要使用的通用技术之一。

该技术在国民经济中,对提高产品质量,保障生产安全和设备安全运作,降低生产成本,提高生产效率特别具有潜在能力。

因此,我国对超声波的研究特别活跃。

超声技术是通过超声波的产生、传播以及接收的物理过程完成的。

超声波具有聚束、定向及反射、投射等特性。

按超声波振动辐射大小不同大致可以分为:

用超声波使物体或物性变化的功率应用,称之为功率超声;用超声波获取信息,称为检测超声。

超声波是听觉阈值之外的振动,其频率围在10

——10

Hz,其常的频率大约在10

——3

之间。

超声波在超声场(被超声波充满的围)传播时,如果超声波的波长与超声场相比,超声场很大,超声波就像处在一种无限的介质中,超声波自由地向外扩散;反之,如果超声波的波长与相邻介质的尺寸相近,则超声波受到界面限制不能自由的向外扩散。

于是超声波在传播过程中有如下的特性和作用:

2.1.1超声波的传播速度

超声波在介质中可以产生三中形式的振荡波:

横波——质点振动方向垂直于传播方向的波;纵波——质点振动方向与传播方向一致的波;表面波——质点振动介于纵波和横波之间,沿表面传播的波。

横波只能在固体中传播,纵波能在固体液体中和气体中传播,表面波随深度的增加其衰减很快。

为了测量各种状态下的物理量多采用纵波形式的超声波。

超声波的频率越高,越与光波某些特性相似。

超声波与气其他声波一样,其传播速度与介质密度和弹性特性有关。

超声波在气体和液体中,其传播速度C

=(

式中

——介质的密度;

——绝对压缩系数。

可以推导出超声波在空气种传播速度

(T为环境温度)。

超声波在固体中的传播速度分两种情况:

(1)纵波在固体介质中的传播速度

其传播与介质的形状有关。

(细棒)

(薄板)

(无限介质)

式中E——氏模具;

——泊松系数;

K——体积弹性模具;

G——剪片弹性模。

(2)横波声速公式为

(无限介质)

在固体中,

介于0——5之间,因此一般可视为横波声速为纵波的一半。

2.1.2超声波的物理性质

当超声波传播到两种特性不同的介质的平面上时,一部分被反射;另一部分透射过界面,在相邻的介质部继续传播;这样的两种情况称之为超声波的反射和折射,如图2.1.2所示:

图2.1.2超声波的反射和折射

(1)超声波的反射和折射

当超声波传播到两种特性阻抗不同介质的平面分界面上时,一部分超声波被反射;另一部分透射过界面,在相邻介质部继续传播;这样的两种情况称之为超声波的反射和折射,如图2.1.2所示。

声波的反射系数和透射系数可以分别由如下两式求得:

式中:

——分别为声波的入射角和反射角;

——分别为两介质的特征阻抗,其中

为反射波和折射波的速度。

反射角、折射角与声速

满足折射定律关系式:

当超声波垂直入射界面时,即

,则:

如果sin

>

,入射波完全被反射,在相邻两个介质中没有折射波。

如果超声波斜入射到两个固体介质面或两粘滞弹性介质面时,一列斜入射的纵波不仅产生反射纵波和折射纵波,而且还产生反射横波和折射横波。

(2)超声波的衰减

超声波在一种介质中传播,其声压和声强按指数函数规律衰减。

在平面波的情况下,距离声源x处的声压p和声强I的衰减规律如下:

式中:

——距离声源x=0处的声压和声强;

——超声波与声波间的距离;

A——衰减系数,单位为

(奈培/厘米)。

(3)超声波的干涉

如果在一种介质中传播几个声波,于是产生波的干涉现象。

若以两个频率相同,振幅

不等,波程差为d的两个波干涉为例,该两个波合成振幅为

,其中

为波长。

从上式看出,当d=0或d=

为整数)时,合成振幅

达到最大值;当d=

时,合成振幅

为最小值。

时,

;当d

的奇数倍时,两波相互抵消合成幅度为0。

由于超声波的干涉,在辐射器的周围形成一个包括最大最小的扬声场。

2.1.3超声波对声场产生的作用

(1)机械作用

超声波传播过程中,会引起介质质点交替的压缩与伸,构成了压力的变化,这种压力的变化将引起机械效应。

超声波引起质点的运动,虽然位移和速度不大,但是与超声波振动的频率的平方成正比的质点的加速度却很大。

有时足以达到破坏介质的程度。

(2)空化作用

在流体动力学指出,存在于液体中的微气泡在声场的作用下振动,当声压达到一定的值时,气泡将迅速膨胀,然后突然闭合,在气泡闭合时产生冲击波,这种膨胀、闭合、振动等一系列动力学过程称为空化。

(3)热学作用

如果超声波作用于介质时被介质所吸收,实际上也就是有能量吸收,同时,由于超声波的振动,使介质产生强烈的高频振荡介质相互摩擦产生热热量,这种能量使介质温度升高。

2.1.4超声波传感器

超声波传感器主要有电致伸缩和磁致伸缩两类,电致伸缩采用双压电瓷晶片制成,具有可逆特性。

压电瓷片具有如下特性:

当在其两端加上大小和方向不断变化的交流电压时,就会产生“压电效应”,使压电瓷也产生机械变形,这种机械变形的大小以及方向与外加电压的大小和方向成正。

也就是说,若在压电晶片两边加以频率为

的交流电电压时,它就会产生同频率的机械振动,这种机械振动推动空气的弛,当

落在音频围时便会发出声音。

反之,如果由超声波机械振动作用于瓷片使其发生微小的形变时,那么压电晶片也会产生与振动频率相同的微弱的交流信号。

超声波传感器结构如下:

图2.1.4.1元件部结构图2.1.4.2超声波外部结构

2.2超声波测距系统原理

在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。

超声测距大致有以下方法:

①取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,故被测距离为S=1/2vt。

本测量电路采用第二种方案。

由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。

如果测距精度要求很高,则应通过温度补偿的方法加以校正。

超声波测距适用于高精度的中长距离测量。

因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。

超声波测距的算法设计:

超声波在空气中传播速度为每秒钟340米(15℃时)。

X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。

由于在这10.2m的时间里,超声波发出到遇到返射物返回的距离如下:

图2.2测距原理

三.系统硬件的具体设计与实现

3.1系统原理和框图

超声波测距系统硬件组成如图3-1所示。

本系统主要由AT89C51单片机及其外围电路、超声波发送接收模块、数码管显示电路、蜂鸣器报警电路等四部分组成。

 

图3-1系统设计框图

启动超声波模块发送,计时等待接收,并经过计算,将测到的结果通过三位共阳数码管显示出来,当超时没有接收到超声波回复时,数码管显示三个负号,表示距离太远,当测量距离低于40cm而大于30cm时,点亮LED提示,当测量距离低于30cm时,亮灯并启动蜂鸣器报警。

3.2功能模块的设计

3.2.1单片机介绍

单片机是把微型计算机主要部分都集成在一个芯片上的单芯片微型计算机,即将运算器,控制器,输入输出接口,部分存储器以及其他一些逻辑部件集成在一个芯片上,故可以把单片机看成是一个不带外部设备的微型计算机,相当于一个没有显示器,没有键盘,不带监控程序的单板机。

由于单片计算机具有体积小,重量轻,耗电少,功能强和价格低等特点,又由于数据大多是在芯片传送处理,所以运行速度快,抗干扰能力强。

单片机从七十年代问世以来,在二十多年的时间里,发展异常迅速,并已广泛应用于各种领域。

单片机具有通讯接口,用单片机进行接口的控制与管理,单片机与主机可并行工作,大提高了系统的运行速度,所以在网络通讯领域也得到了越来越多的应用。

AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—FlashProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处理器,俗称单片机。

AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。

单片机的可擦除只读存储器可以反复擦除100次。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。

AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

AT89C51外形及引脚排列如图2-1所示。

图3.2.1AT89C51外形及引脚图

3.2.1.1AT89C51管脚说明

VCC:

供电电压。

GND:

接地。

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流P1口管脚写入1后,被部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

在实际应用中,大多数情况下都使用P3口的第二功能。

P3.0—RXD:

串行输入口

P3.1—TXD:

串行输出口

P3.2—/INT0:

外部中断0

P3.3—/INT1:

外部中断1

P3.4—T0:

记时器0外部输入

P3.5—T1:

记时器1外部输入

P3.6—/WR:

外部数据存储器

P3.7—/RD:

外部数据存储器

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有部程序存储器。

注意加密方式1时,/EA将部锁定为RESET;当/EA端保持高电平时,此间部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:

反向振荡放大器的输入及部时钟工作电路的输入。

XTAL2:

来自反向振荡器的输出。

容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

3.2.1.2AT89C51主要特性

*与MCS-51兼容

*4K字节可编程闪烁存储器

*寿命:

1000写/擦循环

*数据保留时间:

10年

*全静态工作:

0Hz-24Hz

*三级程序存储器锁定

*128*8位部RAM

*32可编程I/O线

*两个16位定时器/计数器

*5个中断源

*可编程串行通道

*低功耗的闲置和掉电模式

*片振荡器和时钟电路

3.2.1.3芯片擦除

整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms来完成。

在芯片擦除操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。

此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。

在闲置模式下,CPU停止工作。

但RAM,定时器,计数器,串口和中断系统仍在工作。

在掉电模式下,保存RAM的容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

3.2.2超声波测距模块HC-SR04

3.2.2.1产品特点

HC-SR04超声波测距模块可提供2cm—400cm的非接触式距离感测功能,测距精度可高达3mm,模块包括超声波发射器、接收器与控制电路。

原理图如图2.2.1所示:

图3.2.2.1HC-SR04模块电路图

3.2.2.2基本原理

(1)采用IO口TRIG触发测距,提供至少10us的高电平信号;

(2)启动后,模块会自动发送8个40KHz的方波,自动检测是否有信号返回;

(3)如果有信号返回,通过IO口ECHO输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。

(4)测试距离=(高电平时间*声速(340m/s))/2;

3.2.2.3电气参数

表3.2.2.3HC-SR04电气参数

电气参数

HC-SR04超声波模块

工作电压

DC5V

工作电流

15mA

工作频率

40KHz

最远射程

4m

最近射程

2cm

输入出发信号

10us的TTL脉冲

输出回响信号

输出TTL电平信号,与射程成比例

规格尺寸

45*20*15mm

3.2.2.4超声波时序图

图3.2.2.4超声波模块时序图

如图2.2.4为超声波模块发送接收的时序图,表明只要提供一个10us以上脉冲触发信号,该模块部将发出8个40KHz周期电平并检测回波。

一旦检测到有回波信号则输出回响信号。

回响信号的脉冲宽度与所测的距离成正比。

由此通过发射信号到收到的回响信号时间间隔可以计算得到距离。

四.系统软件设计

1.程序设计思路

本设计采用软件查询的方法,检测超声波模块接收管脚的回波信号情况。

当信号为0时,表示没有回波信号,此时等待信号变为高电平,当接收到回波信号时,程序继续运行,此时开启定时器T0,直到回波信号消失才关闭,此时测到的时间就是回波信号的高电平脉宽时间长度。

定时器T1用来数码管显示,并且每个500ms作为一个周期,发送一次超声波。

2.程序流程图

开始

系统、液晶屏初始化

回波?

启动模块发送超声波

开启定时器T0

关闭定时器T0

N

Y

回波?

N

Y

根据温度计算距离

LCD显示距离

30cm<距离<40cm?

Y

超时?

N

LCD显示负号

闪灯提示

Y

距离>700cm?

N

Y

N

距离<30cm?

闪灯提示、蜂鸣器报警

Y

读取温度并计算声速

LCD显示温度

开始

图4.2超声波测距系统主软件流程图

3.程序

具体程序见附录。

五.总结

在此次有关超声波测距系统的设计,让我感觉到了单片机的复杂深度性,它很贴切我们的日常生活,无所不在,应用无处不有,它并不是想象中的那么简单,也并非是无法克服的堡垒。

以上基于单片机的超声波的测距系统的设计包含了:

电路分析、数字、模拟电路和单片机、EDA、传感器、C语言等方面的知识,另外还有选材购买、动手制作等方面。

所以具有很高的参考价值,同时,该设计的方案也是来源于生活中广泛的应用领域,有很强的应用价值。

设计硬件之前,要首先收集好有关的基础性资料,应备有良好的应用类参考书和专业类参考书。

对于有关的科技期刊和专利文献,也要经常阅读以便了解最新的发展情况,借鉴现成的经验,避免重复劳动。

在设计中,要充分了解所用芯片的使用条件及输入输出的特性,这样才能避免因使用错误而多走弯路。

电路设计部分应该有的精神就是广集资料。

只凭借自己头脑中的知识是远远不够的。

哪里出现了问题,就要翻书本,或上网查资料。

当然也要开动自己的脑筋怎样使系统电路更完美。

在电路设计时,应充分发挥单片机的记忆运算、判断控制能力,避免采用复杂的、稳定性较差的模拟电路。

单片机的应用改变了传统的设计思路,以前构建一个系统需用用很多的数字模拟器件或者电路单元来构建,系统可靠性差、缺乏灵活性、维护不便、成本高、无法实现智能化等诸多缺点。

单片机的应用解决了很多问题,现在只要写一个软件,通过单片机和一些简单的外接电路就可以实现具有很多功能的、而且具有智能化的系统,同时可方便升级维护。

所以单片机的应用广泛,在日常生活和生产中占用重要位置。

所以我们设计选择了单片机的系统其说明我们深深的意识到它的重要作用。

最后我非常感学校和老师给我们这么好的学习机会,让我亲身去体会一个项目开发的艰难性,第一次站在一个设计者的角度去看,体会到了他们的艰辛,同时我也感受到了老师对我们的付出,对我们的精心指导,让我顺利完成这次学习任务。

六.致

时间真的过的好快,转眼便是大学毕业之际。

距离离校的日子已日趋临近,毕业设计的完成也随之进入了尾声。

在此我真的要感我的指导老师**老师。

在本次论文设计过程中,**老师对该设计从选题的审核、构思、修改到最后定稿的过程中,自始至终都倾注时间、经历和心血。

由于我自身经验缺乏,所以一开始真的无法下手,设计进程也很缓慢,而此时老师不仅仅在设计方面给予引导,在选材方面也给予参考,特别是她多次询问写作进程,并

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2