物理学本科毕业论文.docx

上传人:b****2 文档编号:17114635 上传时间:2023-07-22 格式:DOCX 页数:36 大小:294.33KB
下载 相关 举报
物理学本科毕业论文.docx_第1页
第1页 / 共36页
物理学本科毕业论文.docx_第2页
第2页 / 共36页
物理学本科毕业论文.docx_第3页
第3页 / 共36页
物理学本科毕业论文.docx_第4页
第4页 / 共36页
物理学本科毕业论文.docx_第5页
第5页 / 共36页
物理学本科毕业论文.docx_第6页
第6页 / 共36页
物理学本科毕业论文.docx_第7页
第7页 / 共36页
物理学本科毕业论文.docx_第8页
第8页 / 共36页
物理学本科毕业论文.docx_第9页
第9页 / 共36页
物理学本科毕业论文.docx_第10页
第10页 / 共36页
物理学本科毕业论文.docx_第11页
第11页 / 共36页
物理学本科毕业论文.docx_第12页
第12页 / 共36页
物理学本科毕业论文.docx_第13页
第13页 / 共36页
物理学本科毕业论文.docx_第14页
第14页 / 共36页
物理学本科毕业论文.docx_第15页
第15页 / 共36页
物理学本科毕业论文.docx_第16页
第16页 / 共36页
物理学本科毕业论文.docx_第17页
第17页 / 共36页
物理学本科毕业论文.docx_第18页
第18页 / 共36页
物理学本科毕业论文.docx_第19页
第19页 / 共36页
物理学本科毕业论文.docx_第20页
第20页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

物理学本科毕业论文.docx

《物理学本科毕业论文.docx》由会员分享,可在线阅读,更多相关《物理学本科毕业论文.docx(36页珍藏版)》请在冰点文库上搜索。

物理学本科毕业论文.docx

物理学本科毕业论文

 

量子力学中微扰理论的简单论述

 

摘要:

在量子力学中,由于体系的哈密顿函数算符往往比较复杂,薛定谔方程能够

 

严格求解的情况寥寥可数。

因此,引入各种近似方法以求解薛定谔方程的问题就什

么重要。

常用的近似方法有微扰法、变分法、半经典近似和绝热近似等,不同的近

似方法有不同的实用范围,在下文中将讨论分立谱的微扰理论。

对于体系的不含时

的哈密顿函数的分立谱的的微扰理论可以分为非简并定态微扰理论和简并定态微扰

理论。

 

关键词:

近似方法;非简并定态微扰理论;简并定态微扰理论

 

1

非简并定态微扰论......................................................................................................

1

1.1

理论简述..............................................................................................................

1

1.2

一级微扰..............................................................................................................

3

1.3

二级修正..............................................................................................................

4

1.4

非简并定态微扰的讨论.......................................................................................

6

1.5

海曼—费曼定理...................................................................................................

7

2

简并定态微扰论..........................................................................................................

8

2.1

理论简述:

............................................................................................................

8

2.2

简并定态微扰论的讨论......................................................................................

10

3

结束语.......................................................................................................................

11

致谢................................................................................................

错误!

未定义书签。

参考文献.......................................................................................................................

11

 

1引言

 

微扰理论是量子力学的重要的理论。

对于中等复杂度的哈密顿量,很难找到其薛定谔方程的精确解。

我们所知道的就只有几个量子模型有精确解,

像氢原子、量子谐振子、与箱归一化粒子。

这些量子模型都太过理想化,无

法适当地描述大多数的量子系统。

应用微扰理论,可以将这些理想的量子模型的精确解,用来生成一系列更复杂的量子系统的解答。

 

量子力学的微扰理论引用一些数学的微扰理论的近似方法。

当遇到比较

复杂的量子系统时,这些方法试着将复杂的量子系统简单化或理想化,变成为有精确解的量子系统,再应用理想化的量子系统的精确解,来解析复杂的量子系统。

基本的方法是,从一个简单的量子系统开始,这简单的系统必须有精确解,在这简单系统的哈密顿量里,加上一个很弱的微扰,变成了较复

杂系统的哈密顿量。

假若这微扰不是很大,复杂系统的许多物理性质(例如,能级,量子态,波函数)可以表达为简单系统的物理性质加上一些修正。

样,从研究比较简单的量子系统所得到的知识,可以进而研究比较复杂的量子系统。

 

微扰理论可以分为两类,不含时微扰理论与含时微扰理论。

不含时微扰理论的微扰哈密顿量不含时间;而含时微扰理论的微扰哈密顿量含时间。

 

1非简并定态微扰论

 

1.1理论简述

 

近似方法的精神是从已知的较简单的问题准确解出发,近似地求较复杂

的一些问题的解,当然,还希望了解这些求解方法的近似程度,估算出近似

解和准确解之间的最大偏离。

下面我们将讨论体系在受到外界与时间无关的

[1]

微小扰动时,它的能级和波函数所发生的变化。

假设体系的哈密顿量H不显含t,定态的薛定谔方程

HE

 

-1-

 

满足下述条件:

(1)H可分解为H0

和H两部分H0厄米,而且H远小于H0

HH

H0

H

H0

上式表示,H与H的差别很小,H可视为加与H0上的微扰。

由于H

不显含t,因此,无论H0

或是H均不显含t。

(2)H0的本征值和已经求出,即在

H0的本征方程

(0)

(0)

(0)

H0n

En

n

中,能级En(0)及波函数n(0)都是已知的。

微扰论的任务就是从

H0的本

征值和本征函数出发,近似求出经过微扰

H后,H的本征值和本征函数。

(3)H0的能级无简并,严格来说,是要求通过微扰论来计算它的修正

 

的那个能级无简并。

例如,要通过微扰论计算

H对H0的第n个能级En(0)的

修正,就要求无简并,它相应的波函数n(0)

只有一个。

其他能级既可以是简

并的,也可以不是简并的。

[2]

(4)H0的能级组成分立谱,或者严格点说,至少必须要求通过微扰来

 

计算它的修正的那个能级

En(0)处于分立谱内,En(0)是束缚态。

在满足上述条件下,可利用定态非简并微扰论从已知的

H0的本征值和

 

本征函数近似求出H的本征值和本征函数。

为表征微扰的近似程度,通常

可引进一个小的参数

,将H写成

H,将的微小程度通过

反映出来。

体系经微扰后的薛定谔方程是:

Hn

(H0

H)n

Enn

将能级En和波函数

n按

展开:

E

E(0)

E

(1)

2E

(2)

n

n

n

n

n

(0)

(1)

2

(2)

n

n

n

 

-2-

 

En

(1),En

(2),⋯n

(1)

,n

(2)

,⋯分别表示能级En和波函数

n的一级,二级⋯

修正。

将上两式代入薛定谔方程中得:

(H0

H)(

(0)

(1)

2

(2)

n

n

n

(0)

(1)

(2)

)(

(0)

(1)

2

(2)

(En

En

2En

n

n

n

然后比较上式两端的的同次幂,可得出各级近似下的方程式:

0:

H0

n

En

n

(0)

(0)

(0)

1:

(H0

En

)n

(1)=

(H

En

(1))n

(0)

(0)

2:

(H0

(0)

(2)

H

E

(1)

(1)

E

(2)

(0)

n

n

n

n

n

n

E

⋯⋯

零级近似显然是无微扰时的定态薛定谔方程式,同样还可以列出准确到

3,4⋯⋯等各级的近似方程式。

[3]

 

1.2一级微扰

 

求一级微扰修正只需要求解(H0

En(0)

n

(1)=

由于H0厄米,H0的本征函数系

(0)

系展开

n

(1)

(1)

(0)

n

al

l

l

将此式代入1的近似薛定谔方程中的

 

(HEn

(1))n(0)。

 

为求出展开系数

(1)

,以

(0)

左乘上式并对全空间积分,利用

(0)

系的正

al

k

n

交归一性后,得

 

当nk时,得

 

-3-

 

当nk时,得

 

那么接下来计算an

(1),利用n的归一条件,在准确到O()数量级后,

 

又因波函数

n(0)归一,

0)(0)

1得:

n

n

 

(1)

(1)

(0)

代入上式得

n

al

l

l

an

(1)必为纯虚数,即

 

为实数。

准确到的一级近似,微扰后体系的波函数是

 

上式表明,an

(1)的贡献无非是使波函数增加了一个无关紧要的常数相位因

 

子,那么,不失普遍性,可取

因此,准确到一级近似,体系的能级和波函数是

 

上式表明,准确到一级近似,H在无微扰能量表象中的对角元给出能量的

一级修正,非对角元给出波函数的一级修正。

[4]

 

1.3二级修正

 

求二级修正需要求解(H0

En)

n

(1)=

(H

En

(1))n

(0)

(0)

 

-4-

 

与求一级修正的步骤相似,将二级修正波函数按

(0)

展开

n

 

将此式代入上式得:

 

以(0)左乘上式,并对全空间进行积分后得:

k

 

当nk时,得,考虑到an

(1)0,由上式得:

 

当nk时,由上式得:

 

至于an

(2),同样可以由波函数的归一条件算出,由

 

 

同样,若取an

(2)为实数,那么由上式得:

 

综合上述,准确到二级近似吗,体系的能级和波函数是:

 

-5-

 

同理,其他各级近似也可用类似的方法算出。

[5]

 

1.4非简并定态微扰的讨论

 

(1)由微扰后的能级可知,微扰实用的条件是

 

只有满足该式,才能满足微扰级数的收敛性,保证微扰级数中最后一项

小于前一项。

这就是HH0的明确表示,微扰方法能否应用,不仅决定

 

于微扰的大小,而且决定于微扰的大小,而且还决定于无微扰体系两个能级

之间的间距。

只有当微扰算符H在两个无微扰体系波函数之间的矩阵元

H

kn

的绝对值远小于五微扰体系相应的两能级间隔E(0)

E(0)

时,才能用微

n

k

扰论来计算。

这就是为什么必须要求作微扰计算的能级处于分立谱,

因为如

果能级En是连续谱,它和相邻的能级的能级间距趋于零,对于除能

En外的

其他所有能级,

是不可能都被满足的。

[6]

 

(2)如何在H中划分H0和H十分重要,H0和H取得好,上式不

 

仅可以满足,而且可以使级数收敛的很快,避免了繁长的微扰计算。

一般,

除了要求的H0本征值和本征函数必须已知外,还可以从体系的对称性及微

扰矩阵元是否满足一定的选择定则来考虑划分H0和H。

 

-6-

 

(3)能量本征函数和本征值的二级修正由相应的一级修正给出,这样我们可以说,微扰论其实也是一种逐步逼近法。

(4)关于的讨论:

由HH0H得出,若设我们将看成一个可

 

变化的参数,则显然当0时,HH0,这时体系未受到微扰的影响;

 

当1时,HH0H,微扰全部加进去了。

因此、可以想象体系当从

 

0缓慢变化到1的过程,也就是体系从无微扰的状态逐步变成有微

 

扰的状态的过程。

[7]

 

1.5海曼—费曼定理

 

设H是的函数,因此他的本征方程和归一条件为:

由上式得:

 

上式就是费曼—海曼定理,它通过对微扰参数的积分给出了含微扰的能量和无微扰能量之差。

 

-7-

 

2简并定态微扰论

 

2.1理论简述:

 

除一维束缚态外,一般情况下均有简并,因此简并微扰比非简并微扰更

具有普遍性,可以说,简并微扰是非简并微扰的特例。

假定H0的第n个能级En(0)有fn度简并,即对应于En(0)有fn个本征函数

 

nv(0)(=1,2,3⋯⋯.fn)。

与简并微扰不同,现在由于不知道在这

fn个

本征函数中应该取哪一个作为无微扰本征函数。

因此,简并微扰要解决的第

一个问题就是:

如何适当选择零级波函数进行微扰计算。

设H0的本征方程是:

 

归一化条件是:

H的本征方程是:

由于

(0)

是完备系,将

(0)

展开后,得:

nv

nv

 

将此式代入上式得:

 

(1)*

以m左乘上式两端,对全空间进行积分后有:

 

其中:

按微扰的精神,将H的本征值E和在H0表象中的本征函数Cnv按的幂级数

 

作微扰展开:

 

再将这两式代入后得:

 

-8-

 

比较上式给出的两端的同次幂,给出:

1:

2:

 

如果讨论的能级是第n个能级,即E0En(0),由的0次幂方程式得:

 

即:

 

a是个待定的常数。

再由一级近似下的薛定谔方程得:

 

在上式中,当mn,得能级的一级修正E

(1)为:

 

为方便书写起见,略去指标n,记同一能级En中,不同简并态,之间

的矩阵元Hn,n为H,。

因此,上式可改写为:

 

上式是一个以系数a为未知数的线性齐次方程组,它有非零解的条件是其

 

系数行列式为零,即:

这是个fn次的久期方程。

由这个久期方程可以解出E

(1)的fn个根Ena

(1)

 

(a=1,2,3⋯⋯fn)将这fn个根分别代入上个齐次线性方程组式后,可得出相应的fn组解aa(a=1,2,3⋯⋯fn),将它们代入

后,得出与Ena

(1)相应的零级波函数的系数。

从而给出零级波函数和能量本征值的一级修正。

它们分别是:

 

-9-

 

那么,由上式可知,新的零级波函数实际上是原来相应于第n个能级的各个

简并本征函数的线性组合,其组合系数由久期方程决定。

一般地,如果久期

方程无重根,将求得的Ena

(1)代入:

原则上可以求出fn组不同的解aa,那么可以求出fn个零级近似的波函

数。

[8]

 

2.2简并定态微扰论的讨论

 

(1)简并来自对守恒量的不完全测量。

每一个守恒量对应于一种对

 

称性。

若由这个

fn次的久期方程解出的

Ena

(1)(a=1,2,3⋯⋯fn)无重根,那

么,无微扰能级E

(0)

经微扰后分裂为

f

条,它们的波函数由各自对应的

(0)

n

n

na

(a=1,2,3⋯⋯fn)表示。

这时,简并将完全消除,原来带来简并的对称性

 

或守恒量将发生或缺。

同理,若

Ena(0)有重根,只要不是fn重根,都将部分

地消除简并,引起部分对称或缺。

[9]

(2)经过重新组合后的零级波函数

a(0)(a=1,2,3⋯⋯fn)彼此互相正

交,满足

(3)在属于En0的fn维子空间中,若经过非简并微扰方法重新组合后

 

的na(0)(a=1,2,3⋯⋯fn)为基矢,则有:

 

由上式可知,H在经过非简并微扰方法处理后的简并态构成的子空间中,

对应对角矩阵。

因此,简并微扰方法的主要精神在于:

重新组合简并态的零

级波函数,使得H在简并态子空间中对角化。

在经过这样的处理后,能量

的一级修正

(1)

(0)

H

0

,与非简并微扰的公式完全相同。

简并微扰

Ena

na

na

-10-

 

的核心问题在于对简并子空间的基底的选择,在于重新选择零级波函数以使

得H在简并子空间对角化,则对角线上的元素就是能量的本征值。

若最初的零级的简并波函数本身就能使得H对角化,即

 

则,由:

将得出En

(1)H。

无须再去重新组合零级波函数。

简并微扰可类似于非简并微扰的方法处理。

[10]

 

3结束语

 

在量子力学中,由于体系的哈密顿函数比较复杂,往往不能求得准确的

解,而只能求得近似解。

因此用来求问题的近似解的方法,就显得很重要。

那么,在上文,我们分别讨论了非简并定态微扰论和简并定态微扰论,并简

单论述了它的理论推导。

由此,我们可以得知,近似方法的精神就是从简单

问题的精确解出发来求比较复杂的问题的近似解。

近似方法除了上文介绍的

非简并定态微扰理论和简并定态微扰理论外,还有含时微扰理论和变分法等

等。

 

参考文献

 

[]

苏如铿.量子力学.高等教育出版社.

2002.12

[2]

周世勋.量子力学教程.高等教育出版社.

2009.06

[3]

曾谨言.量子力学卷(

2)第4版.科学出版社.

2007.08

[4]

钱伯初.量子力学.高等教育出版社.

2006.01

[5]

GennaroAuletta,FountationsandInterpretation

ofQuantumMechanics,World

ScientificPublishingCo.Pte.Ltd,2000.

[6]刘觉平.普通高等教育"十一五"国家级规划教材:

量子力学.高等教育出版社.2012.08

[7]张永德.量子力学.科学出版社(普通高等教育“十五”国家级规划教材).2002.06

[8]曾谨言.量子力学导论.北京大学出版社出版.1992.06

[9]钱伯初,曾谨言.量子力学习题精选与剖析.科学出版社出版,1999年第二版。

[10]

ofSound,2ndeditionVol.I,pp115-118,Macmillan,

J.W.S.Rayleigh,Theory

London(1894)

 

-11-

 

Asimplediscussionofperturbation

 

theoryinquantummechanics

 

Abstract:

Inquantummechanics,becausethesystem'sHamiltonian

 

operatorareiscomplicated,thesituationthatSchrodinger'sequationcanbesolvedisexactlyfew.Therefore,theintroductionofvarious.approximationmethodsforsolvingSchrodingerequationproblemissomethingimportant.Approximatemethodscommonlyareperturbationmethod,variationalmethod,thesemiclassicalapproximationandtheadiabaticapproximationandsoon.Differentapproximationmethodshavedifferentapplicationscope,wewilldiscusstheperturbationtheoryofdiscretespectrumbelow.ForHamiltoniansystemofnotcontainingtimeofdiscretespectralofperturbationtheoryanddegeneratestationaryperturbationtheory.

 

KeyWords:

nondegeneratestationaryperturbationtheory、degenerate

 

stationaryperturbationtheory.

 

-12-

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2