毕业设计论文热能与动力专业.docx

上传人:b****2 文档编号:17228269 上传时间:2023-07-23 格式:DOCX 页数:62 大小:2.30MB
下载 相关 举报
毕业设计论文热能与动力专业.docx_第1页
第1页 / 共62页
毕业设计论文热能与动力专业.docx_第2页
第2页 / 共62页
毕业设计论文热能与动力专业.docx_第3页
第3页 / 共62页
毕业设计论文热能与动力专业.docx_第4页
第4页 / 共62页
毕业设计论文热能与动力专业.docx_第5页
第5页 / 共62页
毕业设计论文热能与动力专业.docx_第6页
第6页 / 共62页
毕业设计论文热能与动力专业.docx_第7页
第7页 / 共62页
毕业设计论文热能与动力专业.docx_第8页
第8页 / 共62页
毕业设计论文热能与动力专业.docx_第9页
第9页 / 共62页
毕业设计论文热能与动力专业.docx_第10页
第10页 / 共62页
毕业设计论文热能与动力专业.docx_第11页
第11页 / 共62页
毕业设计论文热能与动力专业.docx_第12页
第12页 / 共62页
毕业设计论文热能与动力专业.docx_第13页
第13页 / 共62页
毕业设计论文热能与动力专业.docx_第14页
第14页 / 共62页
毕业设计论文热能与动力专业.docx_第15页
第15页 / 共62页
毕业设计论文热能与动力专业.docx_第16页
第16页 / 共62页
毕业设计论文热能与动力专业.docx_第17页
第17页 / 共62页
毕业设计论文热能与动力专业.docx_第18页
第18页 / 共62页
毕业设计论文热能与动力专业.docx_第19页
第19页 / 共62页
毕业设计论文热能与动力专业.docx_第20页
第20页 / 共62页
亲,该文档总共62页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

毕业设计论文热能与动力专业.docx

《毕业设计论文热能与动力专业.docx》由会员分享,可在线阅读,更多相关《毕业设计论文热能与动力专业.docx(62页珍藏版)》请在冰点文库上搜索。

毕业设计论文热能与动力专业.docx

毕业设计论文热能与动力专业

毕业设计(论文)任务书

第1页

毕业设计(论文)题目:

平直翅片管传热与阻力特性的数值研究

毕业设计(论文)要求及原始数据(资料):

1、毕业设计(论文)要求:

(1)了解强化传热技术的发展、平直翅片管强化传热的机理及此换热设备在实际中的应用;

(2)了解翅片管换热与阻力性能研究进程及国内外研究发展现状;

(3)了解用数值方法研究翅片管换热问题的优越性并掌握数值解法的基本原理;

(4)初步掌握GAMBIT软件构建三维模型、划分网格、使用Fluent软件数值求解并对实验数据后处理分析的基本方法;

(5)初步培养严谨的科研素质和独立工作的能力。

2、原始数据:

平直翅片管式换热器在空调制冷、电子器件散热设备中最为常见。

通常管子以叉排和顺排两种方式排列,且流动换热在不同结构通道内各不相同,其流场与温度场可用周期性的流动与换热模型进行模拟,具体问题如下:

流体横掠平直翅片管管束,管内外流体形成交叉流动,由于管束通道结构的对称性,计算区域的物理模型取整个宽度的一半、间距的一半来进行,横向尺寸由管间中分面和管子中心纵剖面界定,高度由翅片厚度中分面及翅片间距中分面来界定。

所以,本文仅取一个单元周期区域研究即可(见图中虚线所围部分)。

假设流动介质为不可压缩空气,物性参数为常数,忽略重力影响,流动为三维、稳态的层流且已进入周期性充分发展段。

翅片管基本尺寸保持翅片厚度为0.2mm,管径10cm,翅片间距为1.6mm,管排纵向间距为22mm,横向间距为16mm。

空气物性参数为:

  第2页

,管外壁面温度恒定:

计算区域结构示意图

第3页

毕业设计(论文)主要内容:

通过对富氧燃烧技术的认识,了解该技术对节能、减排、降耗的适用性;并从技术、经济两方面研究该技术对电站锅炉的影响,能够提出解决一些问题的方案或者建议。

第一部分绪论

第二部分平直翅片管换热流动模型建立与分析

该部分主要分析了平直翅片管通道的流动特点,描述了本文所研究对象的构建及计算区域的选取,并讨论了相关参数的计算方法及模型计算定解条件的确定。

第三部分平直翅片管数值模拟及CFD简介

该部分主要介绍了数值传热学理论及常用数值解法,并分析实验法、分析法和数值解法各自的优势;描述了CFD理论思想基本概况、利用GAMBIT对计算区域离散的方法及FLUENT数值算法的选取。

第四部分翅片管数值计算结果及分析

该部分主要针对不同结构尺寸的平直翅片管数值模拟的结果(速度场、压力场及温度场)进行显示、并对数据整理,分析其各因素对翅片管换热与阻力特性的影响。

第五部分结论

学生应交出的设计文件(论文):

毕业设计一份

  第4页

主要参考文献(资料):

1.李祥华,宋光强.几种新型换热器的特点及使用状况对比[J].化肥工业.2001,9

(1):

78-80.

2.刘卫华.百叶窗型和波形管片式换热器性能实验研究[J].石油化工高等学校学报.1996,9

(2):

49-53.

3.孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].北京:

清华大学航天航空学院,2003,1-5.

4.陶文铨.计算流体力学与传热学[M].西安:

西安交通大学出版社:

1991.4-7.

5.康海军,李妩,李慧珍等.平直翅片管换热器传热与阻力特性的实验研究[J].西安交通大学学报.1994,28

(1):

91-98.

6.柳飞,何国庚.多排数翅片管空冷器风阻特性的数值模拟[J].制冷与空调.2004,4(4):

30-33.

7.宋富强,屈治国,何雅玲等.低速下空气横掠翅片管换热规律的数值模拟[J].西安交通大学学报.2002,36(9):

899-902.

8.徐百平,江楠等.平直翅片管翅式换热器减阻强化传热数值模拟[J].石油炼制与化工.2006,9(37):

45-49.

9.屈治国,何雅玲,陶文铨.平直开缝翅片传热特性的三维数值模拟及场协同原理分析[J].工程热物理学报.2003,5(24):

826-829.

10.刘建,魏文建,丁国良.翅片管式换热器换热与压降特性的实验研究进展[J].制冷学报.2003,(3):

25-30.

专业班级热能0703班学生张谦

要求设计(论文)工作起止日期2011年3月14日至2011年6月18日

指导教师签字日期2011年3月10日

教研室主任审查签字日期2011年3月10日

系主任批准签字日期2011年3月10日

平直翅片管传热与阻力特性的数值研究

摘要

平直翅片管式换热器作为热力系统和制冷空调装备中的一个重要部件,对其换热性能的研究一直是科研人员热衷的课题。

尽管它在结构的紧凑性、传热强度和单位金属消耗量等方面逊于板式或板翅式换热器,但平直翅片管换热器以其能承受高温高压、适应性强、工作可靠、制造简单、生产成本低、选材范围广等优点,仍在能源、化工、石油等行业得到广泛应用。

因而,对其翅片管束通道内的流动与传热问题的研究具有十分重要的意义。

本文针对平直翅片管内的流动特点,主要对以下内容进行研究:

简单概述平直翅片管研究的动态及现状,并在对比分析对其进行实验法、分析法及数值方法的优劣的基础上,确定本文采用数值方法,使用GAMBIT软件对不同结构尺寸的平直翅片管建立物理模型,并通过FLUENT6.2软件对其翅片管通道内的流动进行数值模拟,计算Re数与努塞尔数Nu、阻力系数f的关系,分析流动参数Reynolds数、翅片间距、管排数、翅片管管排间距(横向间距和纵向间距)等因素对平直翅片管流动与换热性能的影响,探讨不同结构通道内的流动特征及阻力特性,为工业应用上平直翅片管结构的设计和改进、优化分析提供理论依据。

关键字:

数值模拟;平直翅片;层流流动;流动换热

NumericalStudyonHeatTransferandPressureDropCharacteristicsofPlain-finnedTube

ABSTRACT

Asplain-finnedtubeisanimportantcomponentforthermalsystemsandrefrigerationandairconditioningequipment,thestudyforitsheattransferperformanceisalwaysahottopicsforresearchers.Althoughitscompactstructure,heattransferefficiencyarelowerthanplateorplate-finheatexchangers,plain-finnedtubeheatexchangershavealsobeingwidelyusedintheenergy,chemical,oilandotherindustriesforitsmanyadvantageswhichcontainedwithstandhightemperatureandpressure,adptablewidely,reliable,simplemanufacturing,lowcostsandwideselection.Thus,studiesfortheflowandheattransferoffinnedtubebundlesareofgreatsignificance.

Aimattheflowcharacteristicsofplain-finnedtube,thispaperwillstudythefollowings:

Simplelyoverviewthestudyprogressandpresentstuationofplain-finnedtube,andonthebasisofcomparativeanalysisthegoodsandbadsofthreeresearchmethods:

experimental,analysisandnumericalmethod.wedetermineuseGambit-softwaretobiludphysicalmodelfordifferentsizetubestructures,anduseFluent6.2-softwaretostudytheflowinthefinnedtubechannel,thencalculatetherelationshipbetweenReandNunumber,f(resistancecofficient),andanalyzeRe,fin-pitchnumberoftuberows,rowspacingoffintube(horizontalspacingandverticalspacing),theimpactontheplain-finnedtube'sflowandheattransferperformance,soastoprovideatheoreticalbasisforthedisgn,improvement andoptimizationofplain-finnedtudeheatexchangers.

Keywords:

numericalsimulation;plain-fin;laminarflow;heattransfer

第一章绪论

1.1课题背景及研究意义

1.1.1强化传热技术概述

强化传热是上世纪六十年代开始蓬勃兴起的一种改善传热性能的先进技术。

它的任务是促进和适应高热流,以达到用最经济的设备来传输特定的热量,用最有效的冷却来保护高温部件的安全运行,以及用最高效率来实现能源的有效利用。

正因为如此传热强化在工业生产中有着十分广泛的应用,无论在动力、冶金、石油、化工、材料制冷等工程领域,还是航空航天、电子、核能等高技术领域,都不可避免的涉及热量的传递及其强化问题。

而换热器作为一种传热设备成为工业生产中不可缺少的设备[1]。

据统计,在现代石油化工企业中,换热器投资占30%~40%;在制冷机组中,蒸发器和凝结器的重量占机组总重量的30%~40%,动力消耗占总值的20%~30%;在热电厂中,如果将锅炉也视作换热设备,则换热器的投资约占整个电厂总投资的70%左右[2]。

因此,换热设备的合理设计、运转和改进对于整个企业投资、金属耗量、空间以及动力消耗有着重要影响。

近十几年来,世界面临着能源短缺的局面,为缓和能源紧张的状况,世界各国竞相采取节能措施,大力发展节能技术已成为当前工业生产和人民生活中一个重要课题。

采用先进技术,节能降耗,倡导低碳生活和绿色的生存模式,提高能源有效利用率势在必行,正是出于这种目的,许多学者对强化换热技术进行了大量的研究,提高换热器的换热效率来节约能源。

换热设备的合理设计、运转和改进对节省资金、能源和金属是十分重要的,因而强化换热对国民经济发展具有重大意义。

强化传热是实现换热器高效、紧凑换热的主要途径,其基本元件的开发研究一直备受关注,各种行业对强化传热的具体要求各不相同,但归纳起来,强化传热技术总可以达到下列目的[2]:

(1)减少初设计的传热面积和重量;

(2)提高现有换热器的换热能力;

(3)使换热器在较低的温差下工作;

(4)减少换热器的阻力,以减少换热器运行时的动力消耗;

(5)提高换热器的换热器能力,同时使得增加的阻力不至于太大。

其中,方法(5)是一种崭新的强化换热的方法,由于很多传统强化换热的方法会明显带来流动阻力的大幅增加,而很多时候阻力增加的代价是大于换热增加带来的效益的,出现这种情况就会得不偿失了。

方法(5)追求的目的是能够在换热系数和流动阻力这两者之间做一个较好的权衡,起到减阻强化传热的效果[3]。

不同的强化传热技术可满足不同的要求,如减少初次传热面积以减小换热器的体积和重量,或提高换热器的换热能力,或增大换热温差,或减少换热器的动力消耗。

这几个目的不可能同时满足,因为它们是相互制约的,在选择某一种强化技术前,必须先根据其具体任务,对设备体积、重量、投资及操作费用进行综合平衡[4]。

现在,对传统换热器设备强化换热研究主要集中在三大方向上[1]:

一是开发新的换热器品种,如板式、螺旋板式、振动盘管式、板翅式等等,这些换热器设计思想都是尽可能地提高换热效率;二是对传统的管壳式换热器采取强化措施。

具体说来,就是用各种异型管取代原来的光管,现在较常用的有螺旋横纹(螺纹管)、横槽纹管、波纹管、内翅管及管内插入强化物质;三是换热设备的强化与用能系统的优化组合,就是说按照能量的品味逐级利用,使用能的流程处于最合理的搭配,降低能耗实现全系统的节能。

无论是在壁面增加粗糙表面还是利用插入物来强化传热技术,虽然传热效果有了很大的改进,但这些方法有许多缺点,例如换热管的加工制作工艺过于复杂,增加金属消耗量从而增加换热器重量,又易于造成管子堵塞,换热能力增强的同时,阻力也相对增大许多,从而造成运行成本的提高等。

因此,它们在强化效果、加工造价、流道通畅、使用寿命、流动阻力等方面上都有待改进,尤其在上述诸性能的综合性能上参差不齐,需要探索更合理的方式[5]。

1.1.2翅片管换热器强化传热技术

在强化传热方法研究中,换热器气体侧的传热热阻是提高换热器传热效果的主要障碍。

对流换热强化技术在气体侧的应用要综合考虑许多因素:

首先要确定流体的流态,即层流或湍流。

在层流对流换热情况下,流体速度和温度呈抛物线分布,从流体核心到壁面都存在速度和温度的梯度,因此对层流换热所采取的强化措施是使流体产生强烈的径向混合,使核心区流体的速度场、温度场趋于均匀,壁面及壁面附近区域的温度梯度增大,进而强化层流换热。

在湍流对流换热情况下,由于流体核心的速度场和温度场都已经比较均匀,对流换热热阻主要存在于贴壁的流体粘性底层中,因此对湍流换热所采取的主要强化措施是破坏边界层,使传热温差发生在更加贴近壁面的流体层中,增强换热能力[6]。

但由于气体导热系数和比热都比较低,即使是湍流换热也无法实现较高的换热系数。

所以,此时采用增强流体扰动,提高换热系数的方法对空气侧换热效果影响不大,增加换热量更有效的方法应该是扩大换热面积。

采用附加表面来增加换热面积、减小流体通道的水力直径,从而改变通道内温度场的分布就是强化空气侧换热最常用的手段之一,翅片管换热器(如图1-1)就是基于上述原理制造出来的。

图1-1翅片管式换热器实物模型

翅片的发展主要分为三个阶段:

连续型翅片、间断型波纹翅片和带涡流发生器的翅片。

其中,连续型翅片包括平直型、波纹型等翅片;间断型翅片包括百叶窗翅片、错位翅片等;带涡流发生器翅片主要是通过涡流发生器产生横向涡和纵向涡来使换热强化。

虽然翅片类型已由平直翅片向波纹片、百叶窗、冲缝片和穿孔翅片等多种高效形式演变,平直翅片的强化传热效果不如错齿翅片和百叶窗翅片,但由于平翅片换热器在结构和制造上的简单方便、运用上的耐久性及其较好的适用性,到目前为止,平翅片换热器仍是最为常用的一种翅片管式换热器之一。

平直翅片管(图1-4)换热器具有良好的传热性能和低阻力性能,其在制冷、空调、化工、电子微器件散热(如CPU热管式散热器-图1-2和1-3)等多个工业领域都得到广泛的应用[7]。

采用平直翅片加强传热的机理是传热面积的增大和水力直径的减小,使流体在通道中形成强烈的紊动,从而有效地降低了热阻,提高了传热效率。

图1-310热管穿finCPU散热器

图1-2忍者I代塔式穿fin散热器

图1-4平直翅片管模型

研究发现,翅片管式换热器管内热阻与铜管翅片的接触热阻及管外空气侧的热阻比为2∶1∶7[5]。

可见管外翅片的换热仍然是制约换热器效能的主要因素,因此,强化空气侧的换热成了管翅式换热器强化传热的重要问题。

翅片管式换热器是一种在制冷、空调、化工等工业领域广泛采用的一种换热器形式,对它的研究不仅有利于提高换热器的换热效率和整体系统性能,而且对改进翅片换热器的设计型式,推出更加节能、节材的紧凑式换热器有着重要的指导意义。

1.2翅片管强化传热的数值解法

随着高速计算机的出现和现代计算技术的发展,以及湍流模型的不断发展与完善,使用电子计算机作为模拟和实验的手段成为可能,从而可以用数值方法来求解流体力学和传热学中的各种各样的问题。

数值传热学(NumericalHeatTransfer,NHT)又称计算传热学(ComputationalHeatTransfer,CHT)是指对描写流动与传热问题的控制方程采用数值方法通过计算机予以求解的一门传热学与数值方法相结合的交叉学科。

数值传热学求解问题的基本思想是:

把原来在空间与时间坐标中连续的物理量的场(如速度场、温度场、浓度场等),用一系列有限个离散点(称为节点,node)上的值的集合来代替,通过一定的原则建立起这些离散点上变量值之间关系的代数方程(称为离散方程,discretizationequation),求解所建立起来的代数方程以获得所求解变量的近似值[8]。

上述基本思想可以用图1-5来表示。

由于翅片管结构及各种工况因素对换热效果的影响十分复杂,以解析方法及实验方法为主要研究方法都不能满足研究的需要,而且随着计算机工业的进一步发展,计算传热学与计算流体动力学发挥着越来越重要的作用。

本文将针对平直翅片管对换热特性与流动阻力的影响利用商业软件FLUENT6.2进行数值模拟。

与实验研究相比,数值解法具有以下一些优点[9]:

图1-5工程物理问题数值计算的一般步骤

(1)经济性好。

运用计算机的数值方法进行预测的最重要优点是它的成本低。

在大多数实际应用中,计算机运算的成本要比相应的实验研究的成本低好几个数量级。

而且随着计算机工业的进一步发展(处理器运算速度的提高,硬件成本的下降),它在科学研究的重要性将越来越突出。

(2)研究周期短。

用计算机进行计算和研究能以及其惊人的速度进行。

一个设计者能够在一天之内研究出多种方案,并从中选择最佳的设计,而相应的实验研究却需要很长的时间。

(3)数据完整。

对一个问题进行数值求解可以得到详尽而完备的数据。

它能够提供在整个计算区域内所有的有关变量(如速度、压力、温度、浓度等)的值。

与实验的情况不同,在计算中几乎没有不能达到的位置。

(4)具有模拟理想条件的能力。

人们有时为了研究一种基本的物理现象,希望实现若干理想化的条件,例如:

常物性、绝热条件、流动充分发展等等,在数值计算中很容易实现这样的一些条件和要求,而在实验中却很难近似到这种理想化的条件。

数值计算方法的这些优点使人们热衷于计算机的分析,但是它也有一些局限性。

因为结果的准确度是由数学模型的精度和数值方法共同决定,因此数学模型和计算方法必须都具有良好的完善性,而且对于十分复杂的问题,数值解目前也很难获得。

虽然在某些研究领域中,目前数值计算几乎已取代了实验研究,但在流体力学与传热学的领域中,实验研究、理论分析与数值计算这三种研究手段则是相辅相成、互为补充的。

理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,可以为检验数值计算结果的准确度提供拟合参照的依据,是指导实验研究和验证新的数值计算方法的理论基础。

但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。

实验测量方法是研究流动与传热问题的最基本的方法,它所得到的实验结果是真实可信的,它是理论分析和数值方法的基础,一方面补充现有的结构模型试验数据库,另一方面为工程设计人员提供新的技术支持,同时还可以与数值模拟的结果进行对比来改进试验设计,因而其重要性不容低估。

然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过实验方法得到结果[10]。

而数值求解(CFD)方法恰好克服了前面两种方法的弱点,在计算机上实现了一个特定的计算,就好像在计算机上做一次物理实验。

它可以通过比较各种型号的换热器的换热和流动阻力优劣情况,初步给出换热器试验设计参数选择的建议,并能用于研究换热器的换热流动性能,对换热器的开发和设计有指导作用。

总之,科学技术发展到今天的阶段,把实验测定、理论分析与数值模拟这三种研究手段有机而协调地结合起来,是研究流动与传热问题的理想而有效的方法。

[2]

1.3平直翅片管换热器的研究进展及成果

人们在进行强化翅片表面换热的研究中,提出了各种强化换热的方法。

总的来说有以下的几种方法:

一是减小换热管的结构尺寸,采用小管径换热管代替大管径换热管,同时减小管排横向间距及纵向间距。

从目前家用空调中所采用的换热管尺寸来看,其管径有不断减小的发展趋势,从以前的9.52mm,7.94mm到现在的7.0mm;二是增强空气侧的湍流强度,可通过不断改变气流来流方向,来达到强化换热的目的,主要采用将翅片冲压成波纹形,由此产生了波纹形翅片类型;三是采用间断式翅片表面,将翅片表面沿气流方向逐渐断开,以阻止翅片表面空气层流边界层的发展,使边界层在各表面不断地破坏,又在下一个冲条形成新的边界层,不断利用冲条的前缘效应,达到强化换热的目的。

属于这种翅片的有条缝形翅片和百叶窗形翅片等。

以下就国内外对这几种强化方式下的翅片类型的实验研究进展作概述介绍,如表1所示:

1.3.1平直翅片管实验研究进展及成果

(1)早在1971年,Rich就对管径为13.3mm,管排间距为27.5mm和管列间距为31.8mm的16种不同结构的平翅片换热器进行了实验研究,实验结果表明翅片间距对换热系数有显著的影响,而管排数对的空气压降几乎没有影响[11]。

(2)1978年,McQuiston发表了第一个基于五种结构参数(翅片间距1.81-6.35mm、管外径为9.96mm、管排间距为22mm、管列间距为25.4mm、管排数为4)的平翅片换热及压降通用关联式[11]。

(3)1986年,Gray和Webb又提出了管排数大于4排的实验关联式,其关联式能较好地预测大管径、大管排间距和大管列间距下的换热特性和压降特性[11]。

(4)1991年,SeshimoandFujii在迎面风速为0.5m/s-2.5m/s的实验条件下,对21种平翅片形换热器进行了研究。

(5)1994年,康海军[12]等对平翅片在不同翅片间距和管排数的情况下,对9种不同结构的平翅片换热器进行了实验,发现片距对传热的影响依赖于临界Re数,对于层流来讲,片间距的增加会导致换热的下降,而对于阻力而言,片间距越大,阻力越小,且两排管的性能优于三、四排管。

并提出了在工业常用Re数范围内的换热和阻力性能通用关联式。

(6)1996年,何国庚[13]等分别对16排、26排和32排的平翅片空气冷却器进行了实验,指出风速对风侧阻力的影响并不相同:

在较少排数时,风速的影响显著些;而随着管排数的增加,风速的影响也趋向稳定。

(7)1996年以来,Wangel一直致力于翅片管的研究,对平翅片换热器也做了大量的研究,同时针对翅片换热器的发展形式,对小管径和小结构尺寸的换热器进行了研究,得出大量十分有价值的研究成果。

(8)2000年,Wangel对18种不同结构的翅片管换热器的空气侧换热特性进行了研究,并分析了管排数、翅片间距、管径对换热特性的影响。

指出在不同的雷诺数下,空气侧的换热特性与翅片间距、管排数和换热管管径有十分重要的关系[11]。

(9)Sparrowe也对单排及双排平直管换热器进行了研究,指出边界层的发展是单排管换热

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2