智能电锅炉学士学位论文.docx

上传人:b****2 文档编号:17287867 上传时间:2023-07-23 格式:DOCX 页数:41 大小:376.98KB
下载 相关 举报
智能电锅炉学士学位论文.docx_第1页
第1页 / 共41页
智能电锅炉学士学位论文.docx_第2页
第2页 / 共41页
智能电锅炉学士学位论文.docx_第3页
第3页 / 共41页
智能电锅炉学士学位论文.docx_第4页
第4页 / 共41页
智能电锅炉学士学位论文.docx_第5页
第5页 / 共41页
智能电锅炉学士学位论文.docx_第6页
第6页 / 共41页
智能电锅炉学士学位论文.docx_第7页
第7页 / 共41页
智能电锅炉学士学位论文.docx_第8页
第8页 / 共41页
智能电锅炉学士学位论文.docx_第9页
第9页 / 共41页
智能电锅炉学士学位论文.docx_第10页
第10页 / 共41页
智能电锅炉学士学位论文.docx_第11页
第11页 / 共41页
智能电锅炉学士学位论文.docx_第12页
第12页 / 共41页
智能电锅炉学士学位论文.docx_第13页
第13页 / 共41页
智能电锅炉学士学位论文.docx_第14页
第14页 / 共41页
智能电锅炉学士学位论文.docx_第15页
第15页 / 共41页
智能电锅炉学士学位论文.docx_第16页
第16页 / 共41页
智能电锅炉学士学位论文.docx_第17页
第17页 / 共41页
智能电锅炉学士学位论文.docx_第18页
第18页 / 共41页
智能电锅炉学士学位论文.docx_第19页
第19页 / 共41页
智能电锅炉学士学位论文.docx_第20页
第20页 / 共41页
亲,该文档总共41页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

智能电锅炉学士学位论文.docx

《智能电锅炉学士学位论文.docx》由会员分享,可在线阅读,更多相关《智能电锅炉学士学位论文.docx(41页珍藏版)》请在冰点文库上搜索。

智能电锅炉学士学位论文.docx

智能电锅炉学士学位论文

目录

第1章绪论1

1.1课题背景1

1.2国内外研究的现状2

1.3使用单片机实现锅炉控制的优点2

第2章锅炉控制系统的设计方案3

2.1控制系统的设计指标3

2.2控制系统的功能简介及系统框图3

2.3研究方案及预期结果4

2.3.1系统硬件总体方案4

2.3.2软件总体方案4

2.3.3设计的研究进程5

第3章锅炉控制系统的硬件电路设计6

3.1单片机电路选择6

3.1.1AT89C52的特点与性能6

3.1.2AT89C52的引脚功能与编程7

3.2锅炉储水温度采集及补偿电路12

3.3室内供暖温度采集电路14

3.4缺水保护电路14

3.5漏电及水过热保护电路15

3.6显示电路的设计16

3.7键盘电路设计18

3.8A/D转换电路19

3.8.1ADC0809转换器19

3.8.2各引脚功能说明19

3.8.3ADC0809工作过程描述20

3.9AT89C52与AT24C01A的接口设计21

3.10电源及继电器板21

3.10.1固态继电器概述及特点21

3.10.2固态继电器主要参数与选用21

3.11看门狗电路23

3.12蜂鸣电路设计26

3.13压力检测电路26

第4章炉控制系统的软件设计29

4.1系统程序流程图29

4.2主函数设计29

4.3运行子函数30

第5章结论32

致谢33

参考文献34

第1章绪论

1.1课题背景

目前我国的燃烧锅炉的数量众多,我国现有中、小型锅炉30多万台,每年耗媒量占我国原煤产量的四分之一,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。

国家在第10到第11个五年计划的科技创新指南中,对光电一体化、资源与环境、新能源与高效节能的指导性课题中明确指出:

需要自动化程度高、节能潜力大、提高安全系数、减轻劳动强度、价格低的新型测控装置。

要求节约率达到百分之5以上,装置投资的回收期在1年以内,采暖锅炉为3年以内。

如小型链条式工业锅炉用的是新型测控装置。

因此这个课题有现实的意义且市场的前景良好。

锅炉微机控制,是近年来新开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,工业锅炉采用的是微机控制和原有的仪表控制,微机控制有以下明显优势:

(1)直观而集中的显示锅炉各运行参数,能显示液位、压力、温度状态。

(2)在运行中可以随时方便的修改各种各样的运行参数的控制值,并修改系统的控制参数,可以方便的改变液位、压力、温度的上限、下限。

(3)提高锅炉的热效率,采用计算机控制后热效率可以比以前提高百分之5到百分之10,据统计,120吨的锅炉,全年平均负荷为百分之70左右,以平均热效率提高百分之5计算,全年节约800吨。

(4)锅炉系统中包含鼓风机、引风机和给水泵等大功率电动机,由于锅炉本身特性和选型的因素,这些风机大部分不会满负荷输出的,原有的方式采用阀门和挡板控制流量,浪费非常严重。

通过对鼓风机、引风机和给水泵进行微机控制可以平均节电达到百分之30到百分之40左右。

(5)作为锅炉控制系统装置,其主要任务是保证锅炉的安全、稳定、经济运行,减少劳动人员的劳动强度。

采用计算机控制的锅炉系统有十分周到的安全机制,可以置多点的声光报警和自动连锁停炉,杜绝人为疏忽造成的重大事故。

综合以上的种种优点可以预见采用计算机控制系统是行业的大势所趋。

单片机是在一块芯片上集成了一片微型计算机所需的CPU、存储器、输入、输出等部件。

单片机自问世以来,性能不断提高和完善,体积小、速度快、功耗低的特点使它的应用领域日益广泛。

一般,工业控制系统的工作环境差,干扰强,利用单片机控制就能克服这些缺点,因此单片机在控制领域得到广泛的应用,使用单片机控制锅炉是很好的选择。

1.2国内外研究的现状

目前我国在单片机测控装置研究、生产、应用中,取得了很大的成绩,总结了很多经验,但是各行业仍处于发展期,经调查,更多科研究所在这方面开展的工作更看重的是理论和算法,数年来这方面的研究的论文较多,着重生产实际的很少。

在上海,新型的单片机测控装置与系统研究的生产基础较雄厚,在生产过程中需要新型的测控装置与系统,因此在不断的努力研究与开发。

上海的工程技术研究人员更着重的是生产实际研究,对理论、算法和成果的论文较少;深圳在研制新型的测控装置与系统领域也比较有成就,尽管与其他国家比较尚有差距,但是,深圳的高校、研究院所的最大的特点就是实际,与生产实际应用项目无关的问题基本不去考虑,主要考虑选取什么材料,测控什么物理量,优点是什么,与机器设备的通讯接口等等。

一些发达国家在单片机新型系统研究、制造和应用上,已积累了很多经验,奠定了基础,进入了国际市场。

我国在新型测控装置与系统研究、制造、应用和经验上,与其他发达国家相比还存在差距,但是我国的研究人员已经克服很多困难,并在不断的摸索中前进,有望在相关领域赶上甚至超过发达国家的技术水平,这是发展趋势。

1.3使用单片机实现锅炉控制的优点

使用单片机实现锅炉液位控制具有较高的实用价值和稳定性好等特点。

能更好地对锅炉进行自动化控制,测量温度时采取光电耦合器,实现光电隔离,避免了工作人员在现场进行检测操控,方便了人员对液位系统的控制,控制方便且系统稳定性能好;采用压力传感器对压力进行测控,可简化设计方案,系统性能也更稳定;单片机不仅有体积小,安装方便,功能较齐全等优点,而且有很高的性价比,应用前景广,同时有助于发现可能存在的故障,通过微机实现蒸汽与给水系统的自动控制与调节,将保证锅炉正常供气供暖,维持稳定系统,保证安全经济运行。

本文就是采用AT89C52单片机为核心芯片的一种锅炉控制系统,具有较高的实用价值和优越性。

本系统与PLC控制系统相比大大降低了使用成本,提高了控制运行速度。

根据仿真模拟运行的结果表明,该系统能很好的克服“假水位”现象,将锅炉控制在给定要求的范围内,对压力不足和压力过大进行安全报警,稳定性能好,容易操作和控制,保证了生产的正常进行。

第2章锅炉控制系统的设计方案

2.1控制系统的设计指标

本设计要求设计一个以单片机为核心的温度闭环控制系统以及水位控制系统,具体的技术指标如下:

(1)恒温温度控制在0-100℃之间,连续可调,误差在±0.5℃之内。

(2)LED实时显示系统温度,用键盘输入设定的温度。

(3)水位过高或过低时报警提示。

(4)具有供暖、热水、定时启动等功能。

(5)漏电、超温、及报警功能。

(6)压力范围及误差:

0~2.5MPa;误差:

≤0.02MPa。

本文需要完成以下工作:

详细分析课题任务,设计键盘电路,单片机系统,显示电路,温度检测电路,水位检测电路,压力检测电路,报警电路,数模转换等系统。

然后根据课题任务的要求设计出实现控制任务的硬件原理图和软件,并进行仿真调试。

2.2控制系统的功能简介及系统框图

整个控制系统主要由CPU主板继电器分板以及控制面板组成以及控制面板组成CPU。

主板实现温度的采集、处理,水位的检测、电源的监视及报警电路等功能。

继电器板用于完成功能的切换及显示功能。

CPU主板如图2.1所示。

图2.1CPU主板硬件框图

传感器一般输出的为模拟量,需要通过A/D转换,转换为单片机能够接收的数字信号,若模拟信号太弱,还需经过运算放大器放大信号。

键盘输入的是系统参数的上、下限极限值,若检测到的信号值出现不在此极限区间的情况,单片机就会驱动蜂鸣器产生报警,此时就需要执行机构控制室内环境相应的改变,使得环境参数重新回到理想区间。

2.3研究方案及预期结果

本设计是采用单片机为核心芯片,及其相关硬件来实现的锅炉液位控制系统,在用液位传感器测液位的同时,又用光电式隔离器和压力传感器对锅炉的温度和压力进行检测,CPU循环检测传感器输出状态,并用LED显示示液位高度,检测液位、温度和压力等数据,实施报警安全提示,当锅炉液位低于用户设定的值时,系统自动打开泵上水,当水位到达设定值时,系统自动关闭水泵。

2.3.1系统硬件总体方案

系统的原理是通过模数转换器ADC0809传到单片机中,在通过6位七段LED显示器显示出液位的四种状态及报警安全提示。

用LED显示是因为它具有显示清晰、亮度高、使用电压低、光电转换效能高、寿命长等特点,根据当前的液位值和用户设定的水位决定是否进行开、关水泵,需要是否开启和关闭驱动阀门的电动机。

本设计运用了多种传感器,在使用液位传感器测液位的同时,我还选用了光电式传感器和压电式传感器来对锅炉的温度和压力进行测量,因为我们所提到的锅炉常用于供暖,所以温度的检测很重要,至于选用压力传感器主要是出于安全考虑的,压力过大有可能对锅炉造成损害甚至造成爆炸,压力过低会导致锅炉控制系统无法正常运行。

所以我在第三章着重介绍了这些传感器。

2.3.2软件总体方案

水位检测是通过四对高亮二极管和光敏三极管所组成的液位传感器分别安装在四个不同的位置,由上至下四个输出端口分别接单片机的I/O口,实时对锅炉里的水位进行检测。

当水位到达某一光敏三极管的位置时,其输出端口就向单片机输出高电平;当水位低于此光敏三极管的位置时,其输出端口就向单片机输出低电平。

由上至下的第一个位置为水位上限报警线,即当水位高于此位置时,开水阀控制系统就会自动报警,提醒工作人员注意,加水电磁阀有可能出故障;第二个位置是自动停止加水线,即当水位高于此位置时,控制系统会自动关闭加水电磁阀,停止加水;第三个位置是自动加水线,即当水位低于此位置时,控制系统会自动接通加水电磁阀,开水加水;第四个位置是水位下限报警线,即当水位低于此位置时,开水房控制系统就会自动报警,提醒工作人员注意,加水电磁阀可能出故障。

本系统所使用的传感器性能稳定,测量准确,大大简化现场安装,具有较高的性价比,有较大的工程应用价值,而且利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。

其优越性主要在于:

首先,通过对锅炉燃烧过程进行有效控制,使燃烧在充分的情况下进行,可以提高燃烧效率。

由于工业锅炉耗煤量大,燃烧热效率每提高1%都会产生巨大的经济效益。

其次,锅炉控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修正运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性。

随着计算机控制技术应用的普及、可靠性的提高及价格的下降,工业锅炉的微机控制必将得到更加广泛的应用。

2.3.3设计的研究进程

本设计三章对系统进行硬件分析,主要介绍了本设计所使用的核心芯片AT89C51,重要对其端口进行介绍,介绍其功能与用途,还介绍了温度传感器、数模转换ADC0809、执行设备、LED显示和报警装置,介绍了他们的原理、结构和电路连接。

我着重介绍了本设计所使用的单片机和传感器,单片机是整个系统的核心部分,传感器的性能在整个系统中起着非常重要的作用,尤其对检测精确度起着重要的作用,在其中我重点介绍了温度传感器,光电式传感器和压电式传感器。

第四章我介绍了整个系统的软件设计。

 

第3章锅炉控制系统的硬件电路设计

3.1单片机电路选择

图3.1系统总框图

硬件元器件的选择,必须考虑到功能的实现、器件的适时性、价格和通用性等几个方面。

在电路的设计中,在实现所要求功能的基础上,尽量使电路简单。

计算机的产生加快了人类改造世界的步伐,但是它毕竟体积庞大。

单片机(微控制器)就是在这种情况下诞生的。

微控制器,亦称单片机或者单片微型计算机。

它是把中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(1/0)等主要计算机功能部件都集成在一块集成电路芯片上的微型计算机。

它的结构与指令功能都是按照工业控制的要求设计的,在智能控制系统中,微控制器得到了广泛的应用。

单片机目前己被广泛地应用于家电、医疗、仪器仪表、工业自动化、航空航天等领域。

市场上比较流行的单片机种类主要有Intel公司、Atmel公司和Philip公司的8051系列单片机,Motorola公司的M6800系列单片机,Intel公司的MCS96系列单片机,Microchip公司的PIC系列单片机等。

各个系列的单片机各有所长,在处理速度、稳定性、I/O能力、功耗、功能、价格等方面各有优劣。

这些种类繁多的单片机家族,给我们单片机的选择也提供了很大的余地。

本设计选用AT89C52单片机,它是一种低功耗、低价格,高性能8位微处理器。

3.1.1AT89C52的特点与性能

AT89C52是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含8kbytes的可反复擦写的Flash只读程序存储器和256bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,与标准MCS-51指令系统及8052产品引脚兼容,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大的AT89C52单片机适合于许多较为复杂控制应用场合。

1)AT89C52系列单片机主要性能参数如下:

2)与MCS-51产品指令和引脚完全兼容

3)8k字节可重擦写Flash闪速存储器

4)1000次擦写周期

5)全静态操作:

0Hz-24MHz

6)三级加密程序存储器

7)256字节内部RAM

8)32个可编程I/O口线

9)3个16位定时/计数器

10)8个中断源

11)可编程串行UART通道

12)低功耗空闲和掉电模式。

AT89C52提供以下标准功能:

8k字节Flash闪速存储器,256字节内部RAM,32个I/O口线,3个16位定时/计数器,一个6向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。

同时,AT89C52可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。

空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。

掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。

3.1.2AT89C52的引脚功能与编程

引脚功能说明如图3.2:

1)Vcc:

电源电压

2)GND:

3)P0口:

P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。

作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口P0写“1”时,可作为高阻抗输入端用。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

图3.2AT89C52单片机封装图

4)P1口:

P1口是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

与AT89C51不同之处是,P1.0和P1.1还可分别作为定时/计数器2的外部计数输入(P1.0/T2)和输入(P1.1/T2EX),参见表1。

引脚号

功能特性

P1.0

T2(定时\计数器2外部计数脉冲输入),时钟输出

P1.1

T2EX(定时\计数器2捕获\重装载触发和方向控制

表1

Flash编程和程序校验期间,P1接收低8位地址。

5)P2口:

P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口P2写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。

在访问8位地址的外部数据存储器(如执行MOVX@RI指令)时,P2口输出P2锁存器的内容。

Flash编程或校验时,P2亦接收高位地址和一些控制信号。

6)P3口:

P3口是一组带有内部上拉电阻的8位双向I/O口。

P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。

此时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。

P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如表2所示:

表2引脚P3口的第二功能

端口引脚号

第二功能

P3.0

RXD(串行输入口)

P3.1

TXD(串行输出口)

P3.2

/INTO(外中断0)

P3.3

/INT1(外中断1)

P3.4

T0(定时/计数器0)

P3.5

T1(定时/计数器1)

P3.6

/WR(外部数据存储器写选通)

P3.7

/RD(外部数据存储器读选通)

此外,P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

7)RST:

复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

8)ALE/PROG:

当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。

一般情况下,ALE仍以时钟振荡频率的1/6输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。

要注意的是:

每当访问外部数据存储器时将跳过一个ALE脉冲。

对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。

该位置位后,只有一条MOVX和MOVC指令才能将ALE激活。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE禁止位无效。

9)PSEN:

程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。

此期间,当访问外部数据存储器,将跳过两次PSEN信号。

10)EA/VPP:

外部访问允许。

欲使CPU仅访问外部程序存储器(地址为0000H—FFFFH),EA端必须保持低电平(接地)。

需注意的是:

如果加密位LB1被编程,复位时内部会锁存EA端状态。

如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。

Flash存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。

11)XTAL1:

振荡器反相放大器的及内部时钟发生器的输入端。

12)XTAL2:

振荡器反相放大器的输出端。

AT89C52的存储器

(1)中断寄存器:

AT89C52有6个中断源,2个中断优先级,IE寄存器控制各中断位,IP寄存器中6个中断源的每一个可定为2个优先级。

(2)数据存储器:

AT89C52有256个字节的内部RAM,80H-FFH高128个字节与特殊功能寄存器(SFR)地址是重叠的,也就是高128字节的RAM和特殊功能寄存器的地址是相同的,但物理上它们是分开的。

当一条指令访问7FH以上的内部地址单元时,指令中使用的寻址方式是不同的,也即寻址方式决定是访问高128字节RAM还是访问特殊功能寄存器。

如果指令是直接寻址方式则为访问特殊功能寄存器。

例如,下面的直接寻址指令访问特殊功能寄存器0A0H(即P2口)地址单元。

MOV0A0H,#data

间接寻址指令访问高128字节RAM,例如,下面的间接寻址指令中,R0的内容为0A0H,则访问数据字节地址为0A0H,而不是P2口(0A0H)。

MOV@R0,#data

堆栈操作也是间接寻址方式,所以,高128位数据RAM亦可作为堆栈区使用。

(3)定时器0和定时器1:

AT89C52的定时器0和定时器1的工作方式与AT89C51的相同。

(4)定时器2:

定时器2是一个16位定时/计数器。

它既可当定时器使用,也可作为外部事件计数器使用,其工作方式由特殊功能寄存器T2CON的C/T2位选择。

定时器2有三种工作方式:

捕获方式,自动重装载(向上或向下计数)方式和波特率发生器方式,工作方式由T2CON的控制位来选择。

(5)波特率发生器:

当T2CON中的TCLK和RCLK置位时,定时/计数器2作为波特率发生器使用。

如果定时/计数器2作为发送器或接收器,其发送和接收的波特率可以是不同的,定时器1用于其它功能。

若RCLK和TCLK置位,则定时器2工作于波特率发生器方式。

波特率发生器的方式与自动重装载方式相仿,在此方式下,TH2翻转使定时器2的寄存器用RCAP2H和RCAP2L中的16位数值重新装载,该数值由软件设置。

(6)中断:

AT89C52共有6个中断向量:

两个外中断(INT0和INT1),3个定时器中断(定时器0、1、2)和串行口中断。

这些中断源可通过分别设置专用寄存器IE的置位或清0来控制每一个中断的允许或禁止。

IE也有一个总禁止位EA,它能控制所有中断的允许或禁止。

定时器2的中断是由T2CON中的TF2和EXF2逻辑或产生的,当转向中断服务程序时,这些标志位不能被硬件清除,事实上,服务程序需确定是TF2或EXF2产生中断,而由软件清除中断标志位。

定时器0和定时器1的标志位TF0和TF1在定时器溢出那个机器周期的S5P2状态置位,而会在下一个机器周期才查询到该中断标志。

然而,定时器2的标志位TF2在定时器溢出的那个机器周期的S2P2状态置位,并在同一个机器周期内查询到该标志。

Flash存储器的编程:

AT89C52单片机内部有8k字节的FlashPEROM,这个Flash存储阵列出厂时已处于擦除状态(即所有存储单元的内容均为FFH),用户随时可对其进行编程。

编程接口可接收高电压(+12V)或低电压(Vcc)的允许编程信号。

低电压编程模式适合于用户在线编程系统,而高电压编程模式可与通用EPROM编程器兼容。

AT89C52单片机中,有些属于低电压编程方式,而有些则是高电压编程方式,用户可从芯片上的型号和读取芯片内的签名字节获得该信息,见表3。

表3顶面标记及签名字节

Vpp=12V

Vpp=5V

顶面标记

AT89C52

Xxxx

yyww

AT89C52

xxxx-5

yyww

签名字节

(030H)=1EH

(031H)=52H

(032H)=FFH

(030H)=1EH

(031H)=52H

(032H)=05H

AT89C52的程序存储器阵列是采用字节写入方式编程的,每次写入一个字节,要对整个芯片内的PEROM程序存储器写入一个非空字节,必须使用片擦除的方式将整个存储器的内容清除。

 

 

图3.3AT89C52编程电路

(7)程程序序校验:

如果加密位LB1、LB2没有进行编程,则代码数据可通过地址和数据线读回原编写的数据,采用如图3.3的电路。

加密位不可直接校验,加密位的校验可通过对存储器的校验和写入状态来验证。

(8)编程方法:

1)在地址线上加上要编程单元的地址信号。

2)在数据线上加上要写入的数据字节。

3)激活相应的控制信号。

4)在高电压编程方式时,将EA/Vpp端加上+12V编程电压。

5)每对Flash存储阵列写入一个字节或每写入一个程序加密位,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2