微积分基础实验报告mathematica.docx

上传人:b****0 文档编号:17747040 上传时间:2023-08-03 格式:DOCX 页数:7 大小:17.51KB
下载 相关 举报
微积分基础实验报告mathematica.docx_第1页
第1页 / 共7页
微积分基础实验报告mathematica.docx_第2页
第2页 / 共7页
微积分基础实验报告mathematica.docx_第3页
第3页 / 共7页
微积分基础实验报告mathematica.docx_第4页
第4页 / 共7页
微积分基础实验报告mathematica.docx_第5页
第5页 / 共7页
微积分基础实验报告mathematica.docx_第6页
第6页 / 共7页
微积分基础实验报告mathematica.docx_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

微积分基础实验报告mathematica.docx

《微积分基础实验报告mathematica.docx》由会员分享,可在线阅读,更多相关《微积分基础实验报告mathematica.docx(7页珍藏版)》请在冰点文库上搜索。

微积分基础实验报告mathematica.docx

微积分基础实验报告mathematica

微积分基础实验报告mathematica

微积分基础实验报告

【实验目的】

1.验证Sin_的泰勒级数;2.了解函数的升降情况以及求零点和极值;3.了解正弦函数的叠加图像;4.了解无极限的函数例;5.了解无穷积分;6.通过无穷大数列求自然对数e【实验要求】

1.观察多项式函数、、的图像逼进正弦曲线的情况。

2.观察函数及其导函数的图像,了解图像的升降情况以及凹凸情况,求出零点与极值。

3.观察函数与的图像,了解随着k的增大,图像的变化。

4.

(1)绘制函数在区间_[-1,1]上的图像,观察图像当_>0时的变化情况。

(2)在函数中取3000个点,绘制散点图。

观察这些点的分布。

5.绘制函数与的图像,观察当n增加时p(_)向sin_逼近的现象。

63__y120653___y!

7!

5!

3753____y63__y21"2_y_kkymk)12sin(1211mkkk_y1sin_y1sin_ysinnkk___p1222)1()(

6.

(1)通过计算与的值,观察这些值的变化趋势。

(2)绘制,与y=e的图像,观察当_增大时图像的走向。

(3)计算的近似值,观察这些近似值对e的逼近情况。

【实验内容】

(主要包含问题分析、计算过程、实验结果等,按课程要求完成)

问题的分析

(1)分别用不同颜色的曲线绘制出区间上正弦曲线以及多项式函数、、的图像。

(2)根据理论知识可知,多项式项数越多越接近正弦曲线的图像。

(1)分别用不同颜色的曲线绘制出区间上函数及其导函数的图像。

(2)当y��<0时,函数下降,当y��>0时函数上升,当y��=0时,函数图像存在极值。

当y��上升时,函数图像为凸函数,当y��下降时,函数图像为凹图像。

当y��取极值时,函数图像出现拐点。

(3)通过图像得出零点近似值,以及函数极小值的近似值,通过编程nnna)11

(1)11(nnnA__y10)1(110)1(__y1!

11kke],[_63__y120653___y!

7!

5!

3753____y]4,4[_63__y21"2_y

得出精确的零点与极值。

(1)分别绘制出区间上函数与的图像。

(2)当k越大时,“波浪”形曲线越接近于直线。

4.

(1)绘制函数在区间_[-1,1]上的图像。

(2)函数在_=0处没有取值。

(3)绘制散点图,观察散点图的分布。

(1)分别取n=5,50,500,在同一坐标系中绘制区间上函数与的图像。

(2)n越大,p(_)的图像越逼近y=sin_的图像。

6.

(1)计算与的值,当n越大时取值越接近e。

(2)绘制,与y=e的图像,观察当_增大时图像的走向。

计算的近似值,分别取k=5,10,15,20,25,30。

观察这些数值可知,当k增大时,取值越接近e。

计算过程

11.

Plot[{Sin[_],_-_^3/6+_^5/120,_-_^3/6,_-_^3/6+_^5/120-_^7/(7!

)},{_,-Pi,Pi}]]2,2[__kkymk)12sin(1211mkkk_y1sin_y1sin]4,4[__ysinnkk___p1222)1()(nnna)11

(1)11(nnnA__y10)1(110)1(__y1!

11kke

curve1=Plot[Sin[_],{_,-Pi,Pi},PlotStyle->{RGBColor[1,0,0]}];curve2=Plot[_-_^3/6+_^5/120,{_,-Pi,Pi},PlotStyle->{RGBColor[1,0,1]}];curve3=Plot[{_-_^3/6,_-_^3/6+_^5/120-_^7/(7!

)},{_,-Pi,Pi}];Show[curve1,curve2,curve3]2.

Plot[{_-_^3/6,1-_^2/2},{_,-4,4}]FindRoot[_-_^3/6,{_,2.5}]g[a_].=a-(a-a^3/6)/(1-a^2/2)NestList[g,2.5,4]FindMinimum[_-_^3/6,{_,-1.5}]FindMinimum[-_+_^3/6,{_,-1.5}]f[__,n_]:

=Sum[(-1)^k__^(2_k+1)/((2_k+1)!

),{k,0,n}];Do[print[FindRoot[f[_,n],{_,3.0}]],{n,3,7}]3.

(1)f[__,n_]:

=Sum[Sin[k__]/k,{k,1,n,2}];Plot[f[_,519],{_,-2Pi,2Pi}]f[__,n_]:

=Sum[Sin[k__]/k,{k,1,n,2}];Plot[f[_,9],{_,-2Pi,2Pi}]

(2)f[__,n_]:

=Sum[Sin[k__]/k,{k,1,n}];Plot[f[_,519],{_,-2Pi,2Pi}]f[__,n_]:

=Sum[Sin[k__]/k,{k,1,n,}];Plot[f[_,9],{_,-2Pi,2Pi}]4.

(1)Plot[Sin[1/_],{_,-1,1}]

Plot[Sin[1/_],{_,-0.1,0.1}]

(2)T=Table[{1/k,Sin[k]},{k,1,3000}];P=ListPlot[T]d=44;T1=Table[{1/k,Sin[k]},{k,3,3000,d}];T2=Table[{1/k,Sin[k]},{k,6,3000,d}];P1=ListPlot[T1,PlotJoined->True,PlotStyle->{RGBColor[1,0,0]}];P2=ListPlot[T2,PlotJoined->True,PlotStyle->{RGBColor[1,0,0]}];Show[P,P1,P2]5.

fgsin=Plot[Sin[_],{_,-4Pi,4Pi},PlotStyle->{RGBColor[1,0,0]}];p[__,n_]:

=__Product[1-_^2/(k_Pi)^2,{k,1,n}];fgproduct=Plot[p[_,50],{_,-4Pi,4Pi}];Show[fgsin,fgproduct]fgsin=Plot[Sin[_],{_,-4Pi,4Pi},PlotStyle->{RGBColor[1,0,0]}];p[__,n_]:

=__Product[1-_^2/(k_Pi)^2,{k,1,n}];fgproduct=Plot[p[_,500],{_,-4Pi,4Pi}];Show[fgsin,fgproduct]6.

(1)Do[Print[{(1.0+1/10^n)^(10^n),(1.0+1/10^n)^(10^n+1)}],{n,

1,7}]

(2)Plot[{(1+10^(-_))^(10^_),(1+10^(-_))^(10^_+1),E},{_,1,4}]Plot[{(1+10^(-_))^(10^_),(1+10^(-_))^(10^_+1),E},{_,2,4}]Plot[{(1+10^(-_))^(10^_),(1+10^(-_))^(10^_+1),E},{_,3,5}]Plot[{(1+10^(-_))^(10^_),(1+10^(-_))^(10^_+1),E},{_,5,6}]Do[Print[N[1+Sum[1/(k!

),{k,1,n}],30]],{n,5,30}]

问题求解结果的分析与结论

11.

改进:

-3-2-1123-2-112-3-2-1123-1-0.50.51

图一通过观察图像,可以看出图一中的红线即的图像最接近正弦曲线,基本与正弦曲线相吻合。

黑线即距离正弦曲线最远。

这说明泰勒级数的项数越多,图像越接近正弦曲线。

由此可以验证Sin_的泰勒级数展开式的正确性。

2.

图二{_;>2.44949}{;0.942809,{_->;1.41421}}由图可知,导数大于零时,_在负根2到正根2下,y单增,导数小于零时,_在大于正根2,小于负根2,y单减。

导数等于零时,存在极-3-2-1123-1-0.50.51-3-2-1123-2-112-3-2-1123-2-112!

7!

5!

3753____y63__y-4-224-4-224

大值于极小值。

当y��上升时,函数图像为凸函数,当y��下降时,函数图像为凹图像。

当y��取极值时,函数图像出现拐点。

并且得到一个零点为_=2044949,以及极小值点(;1.41421,;0.942809)

3.

图四图三

图五图六

由图可知,当k越大时,正弦函数的叠加曲线由波浪形逐渐趋近于直线。

并且周期为2,分别分析两个函数的图像,的图像在某一区间上,“波浪”呈现向下趋势平行于_轴,而的图像在某一区间上,“波浪”呈现向下趋势。

实系线性组合:

当a1到an为1到n,b0到bn为0到n,间隔都为1f[__,n_];=Sum[a_Sin[k__]+b_Cos[k__],{k,1,n,1},{a,1,n,1},{b,1-6-4-2246-0.75-0.5-0.250.250.50.75-6-4-2246-0.75-0.5-0.250.250.50.75-6-4-2246-1.5-1-0.50.511.5-6-4-2246-1.5-1-0.50.511.5_kkymk)12sin(1211mkkk_y1sin

n,1}];Plot[f[_,10],{_,-2Pi,2Pi}]

当a1到an为1到n,中间间隔2,b1到bn为1到n,中间间隔3f[__,n_];=Sum[a_Sin[k__]+b_Cos[k__],{k,1,n,1},{a,1,n,2},{b,1,n,3}];Plot[f[_,10],{_,-2Pi,2Pi}]

能得到f(_)函数的图像。

当_是连续的时候,该函数收敛于f(_)。

周期性函数都可以展成傅里叶级数。

4.

图七图八由图可知,当_->0时,函数分布越密集而在_=0处是否存在极值却无-6-4-2246-20__0-1000100020__0-6-4-2246-400-20__20__400-1-0.50.51-1-0.50.51-0.1-0.050.050.1-1-0.50.51

法判断,于是将区间放大,取区间,f发现函数分布更加密集,而在_=0处仍然无法判断是否存在取值。

所以这些图像只能说明当_>0时,函数分布越密集。

并不能判断_=0处是否存在极值。

Plot[Sin[1/_],{_,-0.01,0.01}]

区间越趋近0,曲线震动越强烈。

(2)

绘制散点图并观察,这3000个点当中的某些点构成一条曲线。

]1.

0,1.

0[_-0.01-0.0050.0050.01-1-0.50.510.0010.0020.0030.004-1-0.50.510.0010.0020.0030.004-0.8-0.6-0.4-0.2

改变k的开始值

0.0010.0020.0030.004-0.20.20.40.60.80.0010.0020.0030.004-1-0.50.510.0010.0020.0030.004-0.975-0.95-0.925-0.9-0.875-0.85-0.8250.0010.0020.0030.004-0.20.20.40.60.80.0010.0020.0030.004-1-0.50.51

改变d

P2图像不变,变得是P1。

为了辨别那些点组成一条直线,很自然的想法是辨认某一点距离最近的是哪一点,与的距离d(k,m)与相关,k取不同值,就得到不同曲线。

5.

0.0020.0040.0060.0080.010.0120.014-0.85564-0.85562-0.85558-0.85556-0.85554-0.855520.0010.0020.0030.004-0.20.20.40.60.80.0010.0020.0030.004-1-0.50.51)sin,1(kkAk)sin,1(mmAmkAmA2)11(mk

K改为500时,

图像重合,说明当n增加时候,pn(_)接近sin_

分别取n=50,500,在同一坐标系中绘制区间上函数与的图像。

观察可知,n越大,p(_)的图像越逼近y=sin_的图像。

6.

-10-5510-1-0.50.51-10-5510-1-0.50.51-10-5510-1-0.50.51-10-5510-1-0.50.51]4,4[__ysinnkk___p1222)1()(

计算与的值,当n越大时取值越接近e。

当n增大时,an逐渐增大,而An逐渐减少。

(2)

nnna)11

(1)11(nnnA1.522.533.542.7052.7152.722.7252.732.533.542.7142.7162.7182.7223.544.552.71822.71842.7186

绘制,与y=e的图像,当_增大时图像发散。

n增大时,an递增,An递减,n无限增大,两个函数图像互相接近于e(3)

5.25.45.65.862.718272.718282.718282.718292.718292.7183__y10)1(110)1(__y

显然,当n越大,进行阶乘越大,e的值越准确。

【实验小结】

(主要包含实验心得等)

通过本次实验已经较为熟悉应用数学软件Mathematica的使用,逐渐掌握用Mathematica来证实以前学过一些数学理论,并且对这些理论有了一些新的认识,通过Mathematica我能更清楚解题的过程,通过实验我深刻的意识到了数学实验的重要,它通过计算机验证了曾经数值计算得到的数学理念,而且还让我从具象的函数图像等对数学的一些抽象观念得到了更为深刻的认知。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2