机械手及控制系统设计.docx

上传人:b****2 文档编号:17894942 上传时间:2023-08-04 格式:DOCX 页数:29 大小:586.41KB
下载 相关 举报
机械手及控制系统设计.docx_第1页
第1页 / 共29页
机械手及控制系统设计.docx_第2页
第2页 / 共29页
机械手及控制系统设计.docx_第3页
第3页 / 共29页
机械手及控制系统设计.docx_第4页
第4页 / 共29页
机械手及控制系统设计.docx_第5页
第5页 / 共29页
机械手及控制系统设计.docx_第6页
第6页 / 共29页
机械手及控制系统设计.docx_第7页
第7页 / 共29页
机械手及控制系统设计.docx_第8页
第8页 / 共29页
机械手及控制系统设计.docx_第9页
第9页 / 共29页
机械手及控制系统设计.docx_第10页
第10页 / 共29页
机械手及控制系统设计.docx_第11页
第11页 / 共29页
机械手及控制系统设计.docx_第12页
第12页 / 共29页
机械手及控制系统设计.docx_第13页
第13页 / 共29页
机械手及控制系统设计.docx_第14页
第14页 / 共29页
机械手及控制系统设计.docx_第15页
第15页 / 共29页
机械手及控制系统设计.docx_第16页
第16页 / 共29页
机械手及控制系统设计.docx_第17页
第17页 / 共29页
机械手及控制系统设计.docx_第18页
第18页 / 共29页
机械手及控制系统设计.docx_第19页
第19页 / 共29页
机械手及控制系统设计.docx_第20页
第20页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

机械手及控制系统设计.docx

《机械手及控制系统设计.docx》由会员分享,可在线阅读,更多相关《机械手及控制系统设计.docx(29页珍藏版)》请在冰点文库上搜索。

机械手及控制系统设计.docx

机械手及控制系统设计

河北工程大学

 

课程设计指导说明书

 

课程题目:

机械手及控制系统设计

专业:

机械设计制造及其自动化—机电方向

班级:

机制11班

***********************

学号8

*******************

 

第一章绪论

题目要求。

3

题目概况。

3

气动机械手。

3

气动机械手的发展趋势。

3

课题的现实意义。

4

第二章气动机械手的操作要求及功能

机械手移动动作示意图。

5

机械手操作面板图。

5

机械手的输入\输出信号定义图。

6

机械手顺序动作的要求。

6

第三章机械部分设计

气动搬运机械手的结构。

8

机械手的主要部件及运动。

8

驱动机构的选择。

9

机械手的技术参数列表。

9

气动回路的设计。

9

末端执行器的设计。

10

升降手臂的设计。

12

平移手臂的设计。

14

第四章机械手控制设计

PLC的简介。

16

PLC的应用领域。

16

PLC的系统组成。

16

PLC的定义及选择。

17

机械手传送系统输入点和输出点分配表。

17

原理接线图。

18

控制程序流程图。

19

机械手控制软件设计。

21

控制系统程序。

21

手动单步操作程序。

21

机械手系统梯形图。

23

语句表程序设计。

24

第五章课程设计总结

 

第一章绪论

机械手是近几十年发展起来的一种高科技自动化生产设备,它的特点是可通过编程来完成各种预期的作业任务。

在构造和性能上兼有人和机器的优点,尤其体现了人的智能和适应性。

机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。

题目要求

题目:

机械手及控制系统设计

要求:

机械手的各动作由气缸驱动,并由电磁阀控制

题目概况

机械手在专用机床及自动生产线上应用十分广泛,主要用于搬动或装卸零件的重复动作,以实现生产自动化。

我国国家标准(GB/T12643—90)对机械手的定义是“具有和人手臂相似的动作功能,可以在空间抓放物体,或进行其他操作的机械装置”。

机械手可分为专用机械手和通用机械手两大类。

专用机械手:

它作为整机的附属部分,动作简单、工作对象单一、具有固定程序,适用于大批量的自动生产。

如自动生产线上的上料机械手、自动换刀机械手等。

通用机械手:

它是一种具有独立控制系统、程序可变、动作灵活多样的机械手。

它适用于可变换生产品种的中小批量自动化生产,它的工作范围大、定位精度高、通用性强,广泛应用于柔性自动线。

气动机械手

气动机械手与其他控制方式的机械手相比,具有价格低廉、结构简单、功率体积比高、无污染及抗干扰性强等特点。

气动机械手是在已有的机械手基础上发展起来的,二者之间的区别在于气动机械手发展的起点高,它强调模块化的形式,把专用机械手和通用机械手结合起来。

现代气动机械手的基本结构由感知部分、控制部分、主机部分和执行部分四个方面组成。

人们可以根据应用情况的不同,选择相应功能和参数的模块。

这是一种先进的设计思想,代表着气动机械手今后的发展方向,也始终贯穿着气动机械手的发展及实用性。

因此,气动机械手可以代替一些功能不理想的工业机械手的地位,在目前的工业自动化线上有着及其广泛的应用前景。

气动机械手的发展趋势

尽管世界工业经济发展放缓,使得气动机械手的发展受到一定的影响。

然而,作为新兴科学技术的产物,气动机械手的发展必将势不可挡。

目前气动机械手的发展呈现出以下趋势:

1、机构模块化

2、控制智能化

3、感觉功能变强

4、系统应用与集成化

5、可靠性越来越高

6、易操作更灵活

7、向微型化方向发展

课题的现实意义

机械手是工业自动化领域中经常遇到的一种控制对象。

年来随着工业自动化的发展,机械手逐渐成为一门新兴学科,并得到了较快的发展。

机械手广泛地应用于锻压、冲压、装配、机加等各个行业。

特别是在超重、高温、有毒、危险、放射性等恶劣的生产环境中,机械手由于其显着的优点而受到特别重视。

总之,机械手是提高劳动生产率,改善劳动条件,减轻工人劳动强度和实现工业自动化的一个重要手段,国内外都十分重视它的应用与发展。

可编程控制器(PLC)是专为在工业环境下应用而设计的实时工业控制装置。

随着微电子技术、自动控制技术和计算机通信技术的飞速发展,PLC在硬件配置、软件编程、通讯联网功能以及模拟量控制等方面均取得了长足的进步,已经成为工厂自动化的标准配置之一。

本次课题设计的机械手就是通过PLC来实现自动化控制,通过此次设计可以更进一步的学习PLC的相关知识,了解世界先进水平,尽可能的多应用于实践。

 

第二章气动机械手的操作要求及功能

机械手移动动作示意图

机械手操作面板图

机械手的输入\输出信号定义图

 

机械手顺序动作的要求

 

1)按下起动按钮SB1时,机械手系统工作。

首先上升电磁阀通电,手臂上升,至上升限位开关动作。

2)左转电磁阀通电,手臂左转,至左转限位开关动作

3)下降电磁阀通电,手臂下降,至下降限位开关动作。

4)启动传送带A运行,由光电开关SP检测传送带A上有无物品送来,若检测到物品,则抓紧电磁阀通电,机械手抓紧,至抓紧限位开关动作。

5)手臂再次上升,至上升限位开关再次动作。

6)右转电磁阀通电,手臂右转,至右转限位开关动作。

7)手臂再次下降,至下降限位开关再次动作。

8)放松电磁阀通电,机械手松开手爪,经延时2秒后,完成一次搬运任务,然后重复循环以上过程。

9)按下停止按钮SB2或断电时,机械手停止在现行工步上,重新起动时,机械手按停止前的动作继续工作。

 

第三章机械部分设计

气动搬运机械手的结构

机械手的种类很多,但按手臂坐标类型来分主要有直角坐标式、圆柱坐标式、球坐标式、关节坐标式、SCARA型。

本次是一个用于传送带上轻型平动搬运机械手的设计。

所针对的机械手属于直角坐标式,如图所示,机械手主要是由基座和手臂两部分组成。

基座的主要任务是支撑。

手臂装在基座上,作上下直线运动和伸缩运动,手部可夹紧/放松。

 

机械手原理图

 

本机械手的全部动作由气缸驱动。

气缸由电磁阀控制。

驱动部分有升降气缸、摆动气缸和手部驱动气缸。

机械手的主要部件及运动

在直角坐标式机械手的基本方案选定后,根据设计任务,为了满足设计要求,本设计的机械手具有2个自由度:

手臂伸缩;手指升降。

本设计的机械手主要由3个大部件和3个气缸组成:

(1)手部,采用一个气爪,通过机构运动实现手爪的张合。

(2)升降臂部,采用直线缸来实现手臂的伸缩。

(3)平移臂部,采用气动滑台来实现手臂的平移。

驱动机构的选择

驱动机构是工业机械手的重要组成部分,工业机械手的性能价格比在很大程度上取决于驱动方案及其装置。

根据动力源的不同,工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。

气动机械手因为结构简单、成本低廉、重量轻、动作迅速、平稳、安全、可靠、节能和不污染环境等优点而被广泛应用在生产自动化的各个行业。

因此,机械手的驱动方案选择气压驱动。

机械手的技术参数列表

一、用途:

车间皮带机之间的搬运

二、设计技术参数:

1、抓重:

2Kg(夹持式手部)

2、自由度数:

2个自由度

3、坐标型式:

圆柱坐标

4、最大工作半径:

200mm

5、机身最大中心高:

415mm

6、主要运动参数:

手臂伸缩行程:

400mm手臂伸缩速度:

300mm/s

手指升降行程:

200mm手指升降速度:

200mm/s

气动回路的设计

机械手气动回路的设计主要是选用合适的控制阀,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作,设计的气动回路图如图所示。

 

 

机械手气动回路图

本设计的气动机械手完成各个运动的气缸只有完全伸出和完全缩回两个状态,选择两位五通换向阀控制各个气缸的运动方向,气缸的进出口回路各设置一个单向节流阀,通过控制进出口空气流量的大小来控制气缸执行器动力的大小和运动速度。

设计中采用PLC控制机械手实现各种规定的预定动作,既可以简化控制线路,节省成本,又可以提高劳动生产率。

末端执行器的设计

由于本设计所采用标准气爪,不需要进行设计,直接选型即可。

本设计要求机械手手爪的最大持重m=2Kg,根据具体的工作要求,选择标准

平行开闭型气爪,其结构如图所示。

当A口进气B口排气时,气缸活塞杆1伸出,通过杠杆2绕杠杆轴8回转,带动两个手指4通过一组钢球3在导轨5上作向外直线运动,两手指便张开,松开工件。

止动块6限制手指张开行程,定位销7保证直线导轨不错位。

平行开闭型气爪结构原理图

1-活塞杆2-杠杆3-钢球4-手指5-导轨6-止动块7-定位销8-杠杆轴

对夹持工件进行受力分析如图所示,2个手指的总夹持力产生的摩擦力2μF必须大于夹持工件的重力mg,故应满足2μF>mg

即F>mg/2μ

式中μ—摩擦系数,本设计的夹持辅助件材料为硬质橡胶,一般令μ=;

由此F>mg/2μ=2×(2×=

 

夹持工件受力示意图

根据计算出的夹持力的大小和表3-1,可选择合适的末端执行器(手爪)的型号:

MHZ-10D。

表3-1

升降手臂的设计

升降手臂为机械手执行上下伸缩运动的机构,它是连接机械手末端执行器和平移手臂的部件,它的基本作用是完成末端执行器的伸出和缩回运动。

升降手臂主要承受末端执行器和夹持物件的重力,

为使设计的标准化和简便化,在本设计中,伸缩手臂采用新薄型带导杆气缸(如图)。

该气缸体积小、轻巧,耐横向负载能力强,耐扭矩能力强,不回转精度高,导向杆的轴承可选择滑动轴承或球轴承,安装方便,二面接管位置可供选择。

新薄型带导杆气缸

根据本机械手的设计技术参数,伸缩手臂的行程为200mm,气爪抓重约为2Kg,加上末端执行器(气爪)和连接板的重量,总质量约为3Kg,由此,伸缩手臂的最大负载F=mg=3×=。

根据数据要求,初步选定为缸径为20mm型号为MGPL20—200的气缸作为机械手的升降手臂。

伸缩手臂作上下直线运动时,主要克服的是摩擦阻力和惯性力,因此,气缸所需要的驱动力应由摩擦阻力,重力和惯性力来确定。

式中

—摩擦阻力,应包括手臂与伸缩导轨间的摩擦阻力,活塞与密封装置处的摩擦阻力;

—手臂在启动过程的惯性力。

其大小可按以下公式计算;

其中

—手臂移动部件的重量(牛顿);

g—重力加速度(米/秒2);

—启动或制动前后的速度差(米/秒);

—启动或制动所需的时间(秒)。

惯性力的计算:

本设计要求手臂升降时V=200mm/s,在计算惯性力的时候,设置启动时间

=,启动速度

V=V=200mm/s。

=

=6N

由于升降运动,气缸所受的摩擦力很小,可以忽略不计。

所以:

气缸所需的驱动力F驱=F摩+F惯+F=0+6+=

气缸的理论驱动力F=1/4πd2p

其中d—气缸活塞杆的直径(米);

p—气缸的工作压力(帕)。

根据设计技术参数d=10mm,p=

代入数据进行计算得F=1/4πd2p=1/4××()2××106

=N

由计算的结果可知F>F驱

即气缸提供的理论驱动力大于气缸实际所需的驱动力,因此,伸缩手臂的设计符合设计要求。

平移手臂的设计

平移手臂为机械手执行左右平移运动的机构,它是连接机械手升降手臂的部件,它的基本作用是完成机械手左右平移运动的。

平移手臂主要承受升降手臂,末端执行器和夹持物件的重力,

为使设计的标准化和简便化,在本设计中,平移手臂采用气动滑台(如图3-4)。

该气缸体积小、轻巧,耐横向负载能力强,耐扭矩能力强。

图3-4气动滑台

根据本机械手的设计技术参数,平移手臂的行程为400mm,气爪抓重约为2Kg,加上升降手臂,末端执行器(气爪)和连接板的重量,总质量约为4Kg,由此,伸缩手臂的最大负载F=mg=4×=。

根据数据要求,初步选定为缸径为12mm型号为mxy12—400的气动滑台作为机械手的平移手臂。

平移手臂做水平直线运动时,主要克服的是摩擦阻力和惯性力,因此,气缸所需要的驱动力应由摩擦阻力,和惯性力来确定。

式中

—摩擦阻力,应包括手臂与伸缩导轨间的摩擦阻力,活塞与密封装置处的摩擦阻力;

—手臂在启动过程的惯性力。

其大小可按以下公式计算;

其中

—手臂移动部件的重量(牛顿);

g—重力加速度(米/秒2);

—启动或制动前后的速度差(米/秒);

—启动或制动所需的时间(秒)。

惯性力的计算:

本设计要求手臂升降时V=300mm/s,在计算惯性力的时候,设置启动时间

=,启动速度

V=V=300mm/s。

=

=

摩擦力的计算:

在垂直方向,可近似认为FN=G总=.。

导杆所受到的水平方向的摩擦力F摩=μFN

其中μ—摩擦系数,气缸导向杆的材料为钢,取μ=。

将有关数据代入进行计算

F摩=μFN=×=

所以:

气缸所需的驱动力F驱=F摩+F惯+F=+=

气缸的理论驱动力F=1/4πd2p

其中d—气缸活塞杆的直径(米);

p—气缸的工作压力(帕)。

根据设计技术参数d=10mm,p=

代入数据进行计算得F=1/4πd2p=1/4××()2××106

=N

由计算的结果可知F>F驱

即气缸提供的理论驱动力大于气缸实际所需的驱动力,因此,平移手臂的设计符合设计要求。

 

第四章机械手控制设计

PLC的简介

可编程控制器简称PLC,国际电工委员会在1985年的PLC标准草案第三稿中对PLC作了如下定义“可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。

它采用可编程程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式、模拟式的输入和输出,控制各种类型的机械或生产过程”。

PLC具有如下特点:

1.编程方法简单易学

2.功能强、性能价格比高

3.硬件配套齐全,用户使用方便,适应性强

4.可靠性高,抗干扰能力强

5.系统的设计、安装、调试工作量少

6.维修工作量小,维修方便

7.体积小,能耗低

PLC的应用领域

随着社会的发展,PLC的应用面越来越广。

一方面由于处理器芯片及有关元件的价格大大下降,使得PLC成本下降;另一方面由于PLC的功能大大增加,能解决复杂的计算和通信问题。

PLC的应用范围通常分成以下5种类型

1.顺序控制

PLC用来取代传统的继电器顺序控制,PLC应用于单机控制、多机控制、生产自动线控制等。

2.运动控制

3.过程控制

4.数据控制

在机械加工中,PLC作为主要的控制和管理系统应用于CNC和NC系统中,可以完成大量的数据控制。

5.通信控制

PLC的通信包括主机与远程I\O的通信、多台PLC之间的通信、PLC和其他智能控制设备之间的通信。

PLC与其他智能控制设备一起,可以组成“集中管理,分散控制”的分布式控制系统。

PLC的系统组成

PLC是一种工业控制计算机,是通过执行反映控制要求的用户程序来实现的,但是CPU是以分时操作方式来处理各项任务的。

PLC的工作过程可分为三部分:

第一部分为上电处理,第二部分是扫描过程,第三部分是出错处理。

PLC的定义及选择

机械手传送系统输入点和输出点分配表

名称

代号

输入

名称

代号

输入

名称

代号

输出

启动

SB1

X0

夹紧

SB5

X10

电磁阀下降

YV1

Y0

下限行程

SQ1

X1

放松

SB6

X11

电磁阀夹紧

YV2

Y1

上限行程

SQ2

X2

上升

SB7

X12

电磁阀上升

YV3

Y2

右限行程

SQ3

X3

下降

SB8

X13

电磁阀右行

YV4

Y3

左限行程

SQ4

X4

左移

SB9

X14

电磁阀左行

YV5

Y4

停止

SB2

X5

单步右移

SB10

X15

原点指示

EL

Y5

手动操作

SB3

X6

回原点

SB11

X16

连续操作

SB4

X7

工件检测

SQ5

X17

 

本次设计中共有16个输入量,6个输出量共22点,查阅相关资料可知,选择型号为FX2N—48MR的可编程控制器。

 

原理接线图

 

控制程序流程图

启动

 

检测物体返回原点

 

开始下降

下降到位继续下降

 

夹紧物体

 

夹紧到位继续夹紧

 

开始上升

 

上升到位继续上升

 

伸出手臂

伸出到位继续伸出

开始下降

下降到位继续下降

放松物体

放松完毕继续放松

开始上升

上升到位继续上升

返回原点

 

机械手控制软件设计

控制系统程序

 

其原理是:

把旋钮置于回原点,X16接通,系统自动回原点,Y5驱动指示灯亮。

再把旋钮置于手动,则X6接通,其常闭触头打开,程序不跳转(CJ为一跳转指令,如果CJ驱动,则跳到指针P所指P0处),执行手动程序。

之后,由于X7常闭触点,当执行CJ指令时,跳转到P1所指的结束位置。

如果旋钮置于自动位置,(既X6常闭闭合、X7常闭打开)则程序执行时跳过手动程序,直接执行自动程序。

手动单步操作程序

 

如下图所示,图中上升\下降、左移\右移都有联锁和限位保护。

 

 

机械手系统梯形图

语句表程序设计

 

第五章课程设计总结

在本次课题设计中,机械手模型控制系统采用PLC进行控制,大大提高了该系统的自动化程度,减少了大量的中间继电器、时间继电器和硬件接线,提高了控制系统的可靠性。

同时,使用PLC进行控制可方便更改生产流程,增强控制功能。

通过本次设计,可以根据工件的变化及运动流程的要求随时更改相关参数,实现机械手控制系统的不同工作需求,机械手控制系统具有了很大的灵活性和可操作性。

本文中介绍的机械手模型控制系统对于教学有很好的辅助作用。

机械手控制技术是一项综合型的技术,机械手控制系统又是一个复杂的随机系统,本次设计的机械手模型控制系统与真正的机械手控制系统之间还有很大的差距。

另外,本文中的机械手模型控制系统比较简单,还需要不断改进和加强。

 

参考文献

1.姜培刚编《机电一体化系统设计》机械工业出版社(2004年9月版)

2.赵松年、张奇鹏主编《机电一体化系统设计》机械工业出版社

3.黄莜调等编《机电一体化技术基础及应用》机械工业出版社(第一版)

4.廖常初《可编程序控制器应用技术》(第四版)重庆大学出版社,2005年1月版

5.王承义《机械手及其应用》机械工业出版社(1981年12月版)

6.吴建强《可编程控制器原理及其应用》哈尔滨工业大学出版社(1998年12月版)

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2