核磁共振.docx

上传人:b****0 文档编号:18234041 上传时间:2023-08-14 格式:DOCX 页数:16 大小:27.77KB
下载 相关 举报
核磁共振.docx_第1页
第1页 / 共16页
核磁共振.docx_第2页
第2页 / 共16页
核磁共振.docx_第3页
第3页 / 共16页
核磁共振.docx_第4页
第4页 / 共16页
核磁共振.docx_第5页
第5页 / 共16页
核磁共振.docx_第6页
第6页 / 共16页
核磁共振.docx_第7页
第7页 / 共16页
核磁共振.docx_第8页
第8页 / 共16页
核磁共振.docx_第9页
第9页 / 共16页
核磁共振.docx_第10页
第10页 / 共16页
核磁共振.docx_第11页
第11页 / 共16页
核磁共振.docx_第12页
第12页 / 共16页
核磁共振.docx_第13页
第13页 / 共16页
核磁共振.docx_第14页
第14页 / 共16页
核磁共振.docx_第15页
第15页 / 共16页
核磁共振.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

核磁共振.docx

《核磁共振.docx》由会员分享,可在线阅读,更多相关《核磁共振.docx(16页珍藏版)》请在冰点文库上搜索。

核磁共振.docx

核磁共振

核磁共振

nuclear magnetic resonance,NMR

  是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。

核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。

核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。

通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。

并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。

原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。

在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。

这种过程就是核磁共振。

核磁共振(MRI)又叫核磁共振成像技术。

是继CT后医学影像学的又一重大进步。

自80年代应用以来,它以极快的速度得到发展。

其基本原理:

是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。

在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。

核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。

为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。

MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。

MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。

它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。

MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。

MR也存在不足之处。

它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。

核磁共振技术的历史

1930年代,物理学家伊西多·拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。

这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。

由于这项研究,拉比于1944年获得了诺贝尔物理学奖。

1946年两位美国科学家布洛赫和珀塞尔发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。

为此他们两人获得了1952年度诺贝尔物理学奖。

人们在发现核磁共振现象之后很快就产生了实际用途,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到13C谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。

1946年,美国哈佛大学的珀塞尔和斯坦福大学的布洛赫宣布,他们发现了核磁共振NMR。

两人因此获得了1952年诺贝尔奖。

核磁共振是原子核的磁矩在恒定磁场和高频磁场(处在无线电波波段)同时作用下,当满足一定条件时,会产生共振吸收现象。

核磁共振很快成为一种探索、研究物质微观结构和性质的高新技术。

目前,核磁共振已在物理、化学、材料科学、生命科学和医学等领域中得到了广泛应用。

原子核由质子和中子组成,它们均存在固有磁矩。

可通俗的理解为它们在磁场中的行为就像一根根小磁针。

原子核在外加磁场作用下,核磁矩与磁场相互作用导致能级分裂,能级差与外加磁场强度成正比。

如果再同时加一个与能级间隔相应的交变电磁场,就可以引起原子核的能级跃迁,产生核磁共振。

可见,它的基本原理与原子的共振吸收现象类似。

早期核磁共振主要用于对核结构和性质的研究,如测量核磁矩、电四极距、及核自旋等,后来广泛应用于分子组成和结构分析,生物组织与活体组织分析,病理分析、医疗诊断、产品无损监测等方面。

对于孤立的氢原子核(也就是质子),当磁场为1.4T时,共振频率为59.6MHz,相应的电磁波为波长5米的无线电波。

但在化合物分子中,这个共振频率还与氢核所处的化学环境有关,处在不同化学环境中的氢核有不同的共振频率,称为化学位移。

这是由核外电子云对磁场的屏蔽作用、诱导效应、共厄效应等原因引起的。

同时由于分子间各原子的相互作用,还会产生自旋-耦合裂分。

利用化学位移与裂分数目,就可以推测化合物尤其是有机物的分子结构。

这就是核磁共振的波谱分析。

20世纪70年代,脉冲傅里叶变换核磁共振仪出现了,它使C13谱的应用也日益增多。

用核磁共振法进行材料成分和结构分析有精度高、对样品限制少、不破坏样品等优点。

最早的核磁共振成像实验是由1973年劳特伯发表的,并立刻引起了广泛重视,短短10年间就进入了临床应用阶段。

作用在样品上有一稳定磁场和一个交变电磁场,去掉电磁场后,处在激发态的核可以跃迁到低能级,辐射出电磁波,同时可以在线圈中感应出电压信号,称为核磁共振信号。

人体组织中由于存在大量水和碳氢化合物而含有大量的氢核,一般用氢核得到的信号比其他核大1000倍以上。

正常组织与病变组织的电压信号不同,结合CT技术,即电子计算机断层扫描技术,可以得到人体组织的任意断面图像,尤其对软组织的病变诊断,更显示了它的优点,而且对病变部位非常敏感,图像也很清晰。

核磁共振成像研究中,一个前沿课题是对人脑的功能和高级思维活动进行研究的功能性核磁共振成像。

人们对大脑组织已经很了解,但对大脑如何工作以及为何有如此高级的功能却知之甚少。

美国贝尔实验室于1988年开始了这方面的研究,美国政府还将20世纪90年代确定为“脑的十年”。

用核磁共振技术可以直接对生物活体进行观测,而且被测对象意识清醒,还具有无辐射损伤、成像速度快、时空分辨率高(可分别达到100μm和几十ms)、可检测多种核素、化学位移有选择性等优点。

美国威斯康星医院已拍摄了数千张人脑工作时的实况图像,有望在不久的将来揭开人脑工作的奥秘。

若将核磁共振的频率变数增加到两个或多个,可以实现二维或多维核磁共振,从而获得比一维核磁共振更多的信息。

目前核磁共振成像应用仅限于氢核,但从实际应用的需要,还要求可以对其他一些核如:

C13、N14、P31、S33、Na23、I127等进行核磁共振成像。

C13已经进入实用阶段,但仍需要进一步扩大和深入。

核磁共振与其他物理效应如穆斯堡尔效应(γ射线的无反冲共振吸收效应)、电子自旋共振等的结合可以获得更多有价值的信息,无论在理论上还是在实际应用中都有重要意义。

核磁共振拥有广泛的应用前景,伴随着脉冲傅里叶技术已经取得了一次突破,使C13谱进入应用阶段,有理由相信,其它核的谱图进入应用阶段应为期不远。

另一方面,医学家们发现水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构,在这一理论基础上1969年,纽约州立大学南部医学中心的医学博士达马迪安通过测核磁共振的弛豫时间成功的将小鼠的癌细胞与正常组织细胞区分开来,在达马迪安新技术的启发下纽约州立大学石溪分校的物理学家保罗·劳特伯尔于1973年开发出了基于核磁共振现象的成像技术(MRI),并且应用他的设备成功地绘制出了一个活体蛤蜊地内部结构图像。

劳特伯尔之后,MRI技术日趋成熟,应用范围日益广泛,成为一项常规的医学检测手段,广泛应用于帕金森氏症、多发性硬化症等脑部与脊椎病变以及癌症的治疗和诊断。

2003年,保罗·劳特伯尔和英国诺丁汉大学教授彼得·曼斯菲尔因为他们在核磁共振成像技术方面的贡献获得了当年度的诺贝尔生理学或医学奖。

其基本原理:

是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。

在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。

核磁共振的原理

核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。

根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:

质量数和质子数均为偶数的原子核,自旋量子数为0

质量数为奇数的原子核,自旋量子数为半整数

质量数为偶数,质子数为奇数的原子核,自旋量子数为整数

迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有:

1H、11B、13C、17O、19F、31P

由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。

将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。

进动具有能量也具有一定的频率。

原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。

原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。

当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。

这种能级跃迁是获取核磁共振信号的基础。

为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。

根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。

因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.

核磁共振的应用

NMR技术

核磁共振频谱学

NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。

对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。

目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。

对于孤立原子核而言,同一种原子核在同样强度的外磁场中,只对某一特定频率的射频场敏感。

但是处于分子结构中的原子核,由于分子中电子云分布等因素的影响,实际感受到的外磁场强度往往会发生一定程度的变化,而且处于分子结构中不同位置的原子核,所感受到的外加磁场的强度也各不相同,这种分子中电子云对外加磁场强度的影响,会导致分子中不同位置原子核对不同频率的射频场敏感,从而导致核磁共振信号的差异,这种差异便是通过核磁共振解析分子结构的基础。

原子核附近化学键和电子云的分布状况称为该原子核的化学环境,由于化学环境影响导致的核磁共振信号频率位置的变化称为该原子核的化学位移。

耦合常数是化学位移之外核磁共振谱提供的的另一个重要信息,所谓耦合指的是临近原子核自旋角动量的相互影响,这种原子核自旋角动量的相互作用会改变原子核自旋在外磁场中进动的能级分布状况,造成能级的裂分,进而造成NMR谱图中的信号峰形状发生变化,通过解析这些峰形的变化,可以推测出分子结构中各原子之间的连接关系。

最后,信号强度是核磁共振谱的第三个重要信息,处于相同化学环境的原子核在核磁共振谱中会显示为同一个信号峰,通过解析信号峰的强度可以获知这些原子核的数量,从而为分子结构的解析提供重要信息。

表征信号峰强度的是信号峰的曲线下面积积分,这一信息对于1H-NMR谱尤为重要,而对于13C-NMR谱而言,由于峰强度和原子核数量的对应关系并不显著,因而峰强度并不非常重要。

早期的核磁共振谱主要集中于氢谱,这是由于能够产生核磁共振信号的1H原子在自然界丰度极高,由其产生的核磁共振信号很强,容易检测。

随着傅立叶变换技术的发展,核磁共振仪可以在很短的时间内同时发出不同频率的射频场,这样就可以对样品重复扫描,从而将微弱的核磁共振信号从背景噪音中区分出来,这使得人们可以收集13C核磁共振信号。

近年来,人们发展了二维核磁共振谱技术,这使得人们能够获得更多关于分子结构的信息,目前二维核磁共振谱已经可以解析分子量较小的蛋白质分子的空间结构。

MRI技术

核磁共振成像

核磁共振成像技术是核磁共振在医学领域的应用。

人体内含有非常丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。

与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改编的是外加磁场的强度,而非射频场的频率。

核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。

核磁共振成像技术还可以与X射线断层成像技术(CT)结合为临床诊断和生理学、医学研究提供重要数据。

核磁共振成像技术是一种非介入探测技术,相对于X-射线透视技术和放射造影技术,MRI对人体没有辐射影响,相对于超声探测技术,核磁共振成像更加清晰,能够显示更多细节,此外相对于其他成像技术,核磁共振成像不仅仅能够显示有形的实体病变,而且还能够对脑、心、肝等功能性反应进行精确的判定。

在帕金森氏症、阿尔茨海默氏症、癌症等疾病的诊断方面,MRI技术都发挥了非常重要的作用。

MRS技术

核磁共振测深

核磁共振探测是MRI技术在地质勘探领域的延伸,通过对地层中水分布信息的探测,可以确定某一地层下是否有地下水存在,地下水位的高度、含水层的含水量和孔隙率等地层结构信息。

目前核磁共振探测技术已经成为传统的钻探探测技术的补充手段,并且应用于滑坡等地质灾害的预防工作中,但是相对于传统的钻探探测,核磁共振探测设备购买、运行和维护费用非常高昂,这严重地限制了MRS技术在地质科学中的应用。

核磁共振的特点

①共振频率决定于核外电子结构和核近邻组态;②共振峰的强弱决定于该组态在合金中所占的比例;③谱线的分辨率极高。

 

磁共振成像的优点

与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerizedtomography,CT)相比,磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。

如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。

具体说来有以下几点:

对人体没有游离辐射损伤;

各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息,这使得医疗诊断和对人体内代谢和功能的研究方便、有效。

例如肝炎和肝硬化的T1值变大,而肝癌的T1值更大,作T1加权图像,可区别肝部良性肿瘤与恶性肿瘤;

通过调节磁场可自由选择所需剖面。

能得到其它成像技术所不能接近或难以接近部位的图像。

对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等。

能获得脑和脊髓的立体图像,不像CT(只能获取与人体长轴垂直的剖面图)那样一层一层地扫描而有可能漏掉病变部位;

能诊断心脏病变,CT因扫描速度慢而难以胜任;

对软组织有极好的分辨力。

对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;

原则上所有自旋不为零的核元素都可以用以成像,例如氢(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。

核磁共振用NMR(NuclearMagneticResonance)为代号。

1.原子核的自旋

核磁共振主要是由原子核的自旋运动引起的。

不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。

自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。

I为零的原子核可以看作是一种非自旋的球体,I为1/2的原子核可以看作是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。

I大于1/2的原子核可以看作是一种电荷分布不均匀的自旋椭圆体。

2.核磁共振现象

原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。

式中,P是角动量,γ是磁旋比,它是自旋核的磁矩和角动量之间的比值,

当自旋核处于磁场强度为H0的外磁场中时,除自旋外,还会绕H0运动,这种运动情况与陀螺的运动情况十分相象,称为进动,见图8-1。

自旋核进动的角速度ω0与外磁场强度H0成正比,比例常数即为磁旋比γ。

式中v0是进动频率。

微观磁矩在外磁场中的取向是量子化的,自旋量子数为I的原子核在外磁场作用下只可能有2I+1个取向,每一个取向都可以用一个自旋磁量子数m来表示,m与I之间的关系是:

m=I,I-1,I-2…-I

原子核的每一种取向都代表了核在该磁场中的一种能量状态,其能量可以从下式求出:

向排列的核能量较低,逆向排列的核能量较高。

它们之间的能量差为△E。

一个核要从低能态跃迁到高能态,必须吸收△E的能量。

让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。

这种现象称为核磁共振,简称NMR。

目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有较大的发展。

1H的核磁共振称为质磁共振(ProtonMagneticResonance),简称PMR,也表示为1H-NMR。

13C核磁共振(Carbon-13NuclearMagneticResonance)简称CMR,也表示为13C-NMR。

3.1H的核磁共振饱和与弛豫

1H的自旋量子数是I=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。

见图8-2。

1H的两种取向代表了两种不同的能级,

因此1H发生核磁共振的条件是必须使电磁波的辐射频率等于1H的进动频率,即符合下式。

核吸收的辐射能大?

式(8-6)说明,要使v射=v0,可以采用两种方法。

一种是固定磁场强度H0,逐渐改变电磁波的辐射频率v射,进行扫描,当v射与H0匹配时,发生核磁共振。

另一种方法是固定辐射波的辐射频率v射,然后从低场到高场,逐渐改变磁场强度H0,当H0与v射匹配时,也会发生核磁共振。

这种方法称为扫场。

一般仪器都采用扫场的方法。

在外磁场的作用下,1H倾向于与外磁场取顺向的排列,所以处于低能态的核数目比处于高能态的核数目多,但由于两个能级之间能差很小,前者比后者只占微弱的优势。

1H-NMR的讯号正是依靠这些微弱过剩的低能态核吸收射频电磁波的辐射能跃迁到高能级而产生的。

如高能态核无法返回到低能态,那末随着跃迁的不断进行,这种微弱的优势将进一步减弱直至消失,此时处于低能态的1H核数目与处于高能态1H核数目相等,与此同步,PMR的讯号也会逐渐减弱直至最后消失。

上述这种现象称为饱和。

1H核可以通过非辐射的方式从高能态转变为低能态,这种过程称为弛豫,因此,在正常测试情况下不会出现饱和现象。

弛豫的方式有两种,处于高能态的核通过交替磁场将能量转移给周围的分子,即体系往环境释放能量,本身返回低能态,这个过程称为自旋晶格弛豫。

其速率用1/T2表示,T2称为自旋晶格弛豫时间。

自旋晶格弛豫降低了磁性核的总体能量,又称为纵向弛豫。

两个处在一定距离内,进动频率相同、进动取向不同的核互相作用,交换能量,改变进动方向的过程称为自旋-自旋弛豫。

其速率用1/T2表示,T2称为自旋-自旋弛豫时间。

自旋-自旋弛豫未降低磁性核的总体能量,又称为横向弛豫。

4.13C的核磁共振丰度和灵敏度

天然丰富的12C的I为零,没有核磁共振信号。

13C的I为1/2,有核磁共振信号。

通常说的碳谱就是13C核磁共振谱。

由于13C与1H的自旋量子数相同,所以13C的核磁共振原理与1H相同。

将数目相等的碳原子和氢原子放在外磁场强度、温度都相同的同一核磁共振仪中测定,碳的核磁共振信号只有氢的1/6000,这说明不同原子核在同一磁场中被检出的灵敏度差别很大。

13C的天然丰度只有12C的1.108%。

由于被检灵敏度小,丰度又低,因此检测13C比检测1H在技术上有更多的困难。

表8-2是几个自旋量子数为1/2的原子核的天然丰度。

5.核磁共振仪

目前使用的核磁共振仪有连续波(CN)及脉冲傅里叶(PFT)变换两种形式。

连续波核磁共振仪主要由磁铁、射频发射器、检测器和放大器、记录仪等组成(见图8-5)。

磁铁用来产生磁场,主要有三种:

永久磁铁,磁场强度14000G,频率60MHz;电磁铁,磁场强度23500G,频率100MHz;超导磁铁,频率可达200MHz以上,最高可达500~600MHz。

频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。

磁铁上备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。

射频发射器用来产生固定频率的电磁辐射波。

检测器和放大器用来检测和放大共振信号。

记录仪将共振信号绘制成共振图谱。

70年代中期出现了脉冲傅里叶核磁共振仪,它的出现使13C核磁共振的研究得以迅速开展。

氢谱

氢的核磁共振谱提供了三类极其有用的信息:

化学位移、偶合常数、积分曲线。

应用这些信息,可以推测质子在碳胳上的位置。

 

CT成像的基本原理

佛山中医院医疗设备科(2003-12-6)

 

一、CT(ComputedTomography)电子计算机体层扫描概述

电子计算机产生之后,给人们的工作生活带来了极大的便利,同时为了减少人为失误,很多东西都采用计算机进行精确控制,在医学领域更不例外。

CT的产生是医学影像学划时代的进展,其实用价值已为中外医学界所共识。

自从1972年头部CT正式应用于临床,1976年发展了体部CT后,我国也在70年代末引

 

进了这一新技术。

在短短的二十年里,全国各地乃至县镇级医院共安装了各种型号的CT数以千台,CT检查在全国范围内迅速地展开,成为医学诊断不可或缺的设备。

 

随着微电子工业和计算机技术的飞速发展,CT机产品日新月异,每隔三至五年便推出一种更新的产品。

一般临床所提及的CT,指的是以X光为放射源所建立的断层图像,称为X光CT。

事实上,任何足以造成影像,并以计算机建立断层图的系统,均可称之为CT;因此除X光CT外,还有超声波CT(UltrasonicCT),电阻抗CT(ElectricalImpedanceCT,EICT),单光子发射CT(SinglePhotonEmissionCT),以及核磁共振CT(MagneticResonantImagingCT,MRICT)等;超声波CT与EICT尚属发展阶段。

80年代初,人们按照探测器的构造和扫描方式的不同,将CT机的发展分为第一、二、三、四代,甚至有所谓的第五代CT。

二、CT结构和原理

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2