设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx

上传人:b****0 文档编号:18244989 上传时间:2023-08-14 格式:DOCX 页数:31 大小:352.64KB
下载 相关 举报
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第1页
第1页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第2页
第2页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第3页
第3页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第4页
第4页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第5页
第5页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第6页
第6页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第7页
第7页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第8页
第8页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第9页
第9页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第10页
第10页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第11页
第11页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第12页
第12页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第13页
第13页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第14页
第14页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第15页
第15页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第16页
第16页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第17页
第17页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第18页
第18页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第19页
第19页 / 共31页
设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx_第20页
第20页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx

《设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx》由会员分享,可在线阅读,更多相关《设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx(31页珍藏版)》请在冰点文库上搜索。

设计甲醇水溶液的常压筛板精馏塔化工课程设计.docx

设计甲醇水溶液的常压筛板精馏塔化工课程设计

 

化工课程设计

 

学院:

化学与化工学院

班级:

化工1204

姓名:

李敏

学号:

1215010424

2015年1月8日

一、绪论

原理

精馏一种利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。

精馏操作按不同方法进行分类。

根据操作方式,可分为连续精馏和间歇精馏;根据混合物的组分数,可分为二元精馏和多元精馏;根据是否在混合物中加入影响汽液平衡的添加剂,可分为普通精馏和特殊精馏(包括萃取精馏、恒沸精馏和加盐精馏)。

若精馏过程伴有化学反应,则称为反应精馏。

双组分混合液的分离是最简单的精馏操作。

典型的精馏设备是连续精馏装置,包括精馏塔、再沸器、冷凝器等。

精馏塔供汽液两相接触进行相际传质,位于塔顶的冷凝器使蒸气得到部分冷凝,部分凝液作为回流液返回塔底,其余馏出液是塔顶产品。

位于塔底的再沸器使液体部分汽化,蒸气沿塔上升,余下的液体作为塔底产品。

进料加在塔的中部,进料中的液体和上塔段来的液体一起沿塔下降,进料中的蒸气和下塔段来的蒸气一起沿塔上升。

在整个精馏塔中,汽液两相逆流接触,进行相际传质。

液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。

对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。

进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。

两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。

当使n组分混合液较完全地分离而取得n个高纯度单组分产品时,须有n-1个塔。

精馏之所以能使液体混合物得到较完全的分离,关键在于回流的应用。

回流包括塔顶高浓度易挥发组分液体和塔底高浓度难挥发组分蒸气两者返回塔中。

汽液回流形成了逆流接触的汽液两相,从而在塔的两端分别得到相当纯净的单组分产品。

塔顶回流入塔的液体量与塔顶产品量之比,称为回流比,它是精馏操作的一个重要控制参数,它的变化影响精馏操作的分离效果和能耗。

评价精馏操作的主要指标是:

①产品的纯度。

板式塔中的塔板数或填充塔中填料层高度,以及料液加入的位置和回流比等,对产品纯度均有一定影响。

调节回流比是精馏塔操作中用来控制产品纯度的主要手段。

②组分回收率。

这是产品中组分含量与料液中组分含量之比。

③操作总费用。

主要包括再沸器的加热费用、冷凝器的冷却费用和精馏设备的折旧费,操作时变动回流比,直接影响前两项费用。

课程设计是《化工原理》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。

在整个教学计划中,它也起着培养学生独立工作能力的重要作用。

课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。

所以,课程设计是培养学生独立工作能力的有益实践。

通过课程设计,学生应该注重以下几个能力的训练和培养:

1.查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力;

2.树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力;

3.迅速准确的进行工程计算的能力;

4.用简洁的文字,清晰的图表来表达自己设计思想的能力。

二、设计方案简介

2.1设计分析

该设计选用逐级接触式的筛板塔作为分离设备,一个完整的板式塔主要是由圆柱形塔体、塔板、降液管、溢流堰、受液盘及气体和液体进、出口管等部件组成,这就需要对各个部件做出选择并给出合理的工艺尺寸,因此我们对精馏塔进行物料衡算,由

间的关系并差取相关数据,确定相对挥发度和回流比求出相平衡方程和操作线方程,然后通过逐板计算法算得理论塔板数并由全塔效率确定实际塔板数,最后对塔高、塔径、溢流装置等各个部件进行计算与核算校验(如负荷性能图),最终得到符合工艺要求的精馏塔并能完成生产任务。

2.2设计方案

设计甲醇-水溶液的常压筛板精馏塔,原料液中含甲醇79%,泡点进料,要求塔顶出液浓度98%,塔釜出液浓度0.04%,处理量为5000kg/h,塔效率为0.8。

2.3工艺流程

原料液由高位槽经过预热器预热后进入精馏塔内。

操作时连续的从再沸器中取出部分液体作为塔底产品(釜残液)再沸器中原料液部分汽化,产生上升蒸汽,依次通过各层塔板。

塔顶蒸汽进入冷凝器中全部冷凝或部分冷凝,然后进入贮槽再经过冷却器冷却。

并将冷凝液借助重力作用送回塔顶作为回流液体,其余部分经过冷凝器后被送出作为塔顶产品。

为了使精馏塔连续的稳定的进行,流程中还要考虑设置原料槽。

产品槽和相应的泵,有时还要设置高位槽。

且在适当位置设置必要的仪表。

 

2.4设计方案概述

设计中采用泡点进料,塔顶上升蒸汽采用全冷凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

具体如下:

塔型的选择本设计中采用筛板塔。

筛板塔的优点是结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。

处理能力大,比同塔径的泡罩塔可增加10~15%。

塔板效率高,比泡罩塔高15%左右。

压降较低。

缺点是塔板安装的水平度要求较高,否则气液接触不匀。

加料方式和加料热状况的选择:

加料方式采用直接流入塔内。

虽然进料方式有多种,但是饱和液体进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制;此外,饱和液体进料时精馏段和提馏段的塔径相同,无论是设计计算还是实际加工制造这样的精馏塔都比较容易,为此,本次设计中采取饱和液体进料

设计的依据与技术来源:

本设计依据于精馏的原理(即利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝使轻重组分分离),并在满足工艺和操作的要求,满足经济上的要求,保证生产安全的基础上, 对设计任务进行分析并做出理论计算。

三、装置设备的工艺计算

3.1设计题目中的已知条件:

原料液中甲醇质量分数为17%,即

XF=

0.10331

塔顶出料液浓度质量分数为98%,即

XD=

0.96499

塔釜出料液质量分数为0.04%,即

Xw=

0.00022504

ET=0.8处理量为5000kg/h

物理性质参数

项目

分子式

分子量

沸点k

甲醇A

32

337.7

水B

18

373

3.2物料的衡算

甲醇的分子式为

千摩尔质量为32

,水的分子式为

千摩尔质量为18

原料液的平均千摩尔质量为

19.44kg/koml

F=

257.20kmol/h

采出率:

0.10685

由上式求出塔顶馏出液量为

D=F*0.10685=27.48kmol/h

则塔釜残液量为

W=D-F=257.20-27.48=229.72kmol/h

3.3塔板数的确定

甲醇和水的气液平衡数据

T

X

Y

100

0

0

96.4

0.02

0.134

93.5

0.04

0.234

91.2

0.06

0.304

89.3

0.08

0.368

87.7

0.1

0.418

84.4

0.15

0.517

81.7

0.2

0.579

78

0.3

0.665

75.3

0.4

0.729

73.1

0.5

0.779

71.2

0.6

0.825

69.3

0.7

0.87

67.5

0.8

0.915

66

0.9

0.958

65

0.95

0.979

64.5

1

1

 

水-甲醇物系的气液平衡数据,绘出x-y图

可利用图解法求理论板层数

由手册查得水-甲醇物系的气液平衡数据,绘出x-y图。

求最小回流比及操作回流比。

采用作图法求最小回流比。

在图中对角线上,自点(0.10331,0.10331)作垂线即为进料线,该线与平衡线的交点坐标为yq=0.425xq=0.10331

故最小回流比为Rmin=

=1.68

取操作回流比为R=2Rmin=2×1.68=3.36

3.4操作线方程

求精馏塔的气液相负荷

L=RD=3.36×27.48=92.33kmol/h

V=(R+1)D=4.46×27.48=122.56kmol/h

L'=L+F=92.33+257.20=349.53kmol/h

V'=V=122.56kmol/h

精馏段操作线方程:

提留段操作线方程:

0.00022504=2.85Xn-0.000422

3.5理论塔板数的确定

各个组分下甲醇对水的相对挥发度

T

α

96.4

7.582

93.5

7.169

91.2

6.843

89.3

6.61

87.7

6.464

84.4

6.066

81.7

5.501

78

4.632

85.3

4.035

73.1

3.525

71.2

3.143

69.3

2.868

67.5

2.691

66

2.534

65

2.454

由于甲醇对水的相对挥发度受温度影响较大,因此用作图法求得理论板数

作出两条操作线,并用M.T法求出理论板数:

NT=8.5

精馏段:

NT=4.5

提馏段:

NT=4,由图可知第5块为进料板

3.6实际塔板数

由图可知:

当xD=0.96499时,TD=65.76℃

当xw=0.00022504时,Tw=99.96℃

实际板NP=8.5/0.8=11块

精馏段实际层数N精=4.5/0.8=6

提馏段实际层数N提=4/0.8=5

塔顶

xD=y1=0.96499,查平衡曲线x1=0.916

气相MVDM=0.96499×32.04+0.03401×18.02=31.55㎏/kmol

液相MJDM=0.916×32.04+0.084×18.02=30.86㎏/kmol

进料板

由图可知,

xF=0.10331yF=0.425

气相MVDM=0.425×32.04+(1-0.425)×18.02=23.97㎏/kmol

液相MLDM=0.10331×32.04+(1-0.10331)×18.02=19.46㎏/kmol

精馏段

气相MVFM=0.5×(31.55+23.9)=27.73㎏/kmol

液相MLFM=0.5×(30.86+19.46)=25.16㎏/kmol

平均密度

因为PD=1.03atm=101.325+4=105.325kPa

单板压降ΔP=70mm

液柱=0.070×1×103×10×13=9100Pa=9.1kPa

PF=PD+0.70×13=114.425kPa

精馏段平均压力Pm=(105.325+114.425)/2=109.875KPa

气相

Pm=109.875kPa

kg/m3

液相

LM=

塔顶

因为塔顶T=65.76℃

查手册得

A=749.85㎏/m3;

B=980㎏/m3

代入公式得

LDM=756.06㎏/m3

进料板

由图可知:

X进料板=0.081,

查气液相平衡数据可知:

T进料板=89.3℃

所以,进料板

B=970.5㎏/m3;

A=734.85㎏/m3

进料板液相的质量分率

液相密度

精馏段液相平均密度为

LM=0.5×(

LDM+

LFM)=0.5×(756.06+913.38)=834.72㎏/m3

塔顶

由tD=65.76℃,查手册得

σA=18.00mN/mσB=65.28mN/m

σLDm=0.965×18.00+0.035×65.28=19.651mN/m

进料板

由tF=89.30℃,查手册得

σA=16.8mN/mσB=62.22mN/m

σLFm=0.12×16.8+0.88×62.22=56.77mN/m

平均表面张力

精馏段液相平均表面张力为:

σLm=(19.65+56.77)/2=38.21mN/m

塔顶

由tD=65.76℃,查手册得μA=0.340mPa•s;μB=0.436mPa•s

lgμLDM=0.965lg0.340+0.035lg0.436

得μLDM=0.343

进料板

由tF=89.30℃,查手册得μA=0.5mPa•s;μB=0.347mPa•s

得μLFM=0.363mPa•s

精馏段的平均表面张力为μlm=0.353mPa•s

3.7筛板的力学验算

塔板压降

气体通过筛板压降相当的液控高度hp

依式hp=hc+hl+hδ来计算

干板阻力hc计算

干板阻力hc,

由d0/δ=5/3=1.67,查图得,C0=0.772m

m

气流通过板上液层的阻力hc计算

气体通过液层的阻力hl计算

h=βhL

查表得β=0.60

故hl=βhL=β(hW+hOW)=0.60×(0.0467+0.0133)=0.036m液柱

液体表面张力的阻力的计算

液体表面张力所产生的阻力

m液柱

气体通过筛板的压降

hp=hc+hl+hδ=0.0382+0.036+0.0037=0.0779

单板压降ΔPp=hp

Lg=0.0779×834.72×9.81=638Pa≤0.7KPa

故设计合理

液面落差

对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响。

3.8漏液验算

漏液验算

由式u0,min=

=

=9.361m/s

实际孔速u0=9.361m/s>u0,min

筛板稳定系数K=u0/u0,min=18.70/9.365>1.5

故本设计中无明显漏液

漏液线

由u0,min=

u0,min=Vs,min/Ao

hL=hW+hOW

how=

=4.4×0.772×0.101×0.532×

整理得Vs,min=5.106

漏液线数据表-1

LS(×10-3m3/s)

0.6

1.5

3.0

4.5

6.0

VS(m3/s)

0.54

0.557

0.5766

0.593

0.593

四、精馏塔热量衡算

4.1热量衡算

用以下公式计算焓:

H=a(T-T0)+b(T2-T02)+c(T3-T03)+d(T4-T04)

水:

a=18.2964,b=472.118×10-3,c=-1338.78×10-6,d=1314.24×10-9

甲醇:

a=-258.25,b=3358×10-3,c=-11638.8×10-6,d=14051.6×10-9

4.2塔顶蒸汽带出热量QV

QV=V×HV

从甲醇水溶液的相平衡数据查得xD=0.965时

泡点T=65.76℃,此时甲醇的比汽化热为1120kJ/kg

摩尔汽化热为  1120×32.04=35884.8kJ/kmol

T=65.76℃时,水的比汽化热为2500kJ/kg

摩尔汽化热为  2500×18.04=45050kJ/kmol

组成为xD=0.965的乙醇水溶液的摩尔汽化热为

Hv=35884.8×0.96499+45050×0.03511=36210.1kJ/kmol

塔顶蒸汽带出热量QV为

QV=V×Hv=137.71×36210.1=4986503.702kJ/h

4.3塔底产品带出热量QW

QW=W×HW

XW=0.00024,T=99.9℃

HW=7538.895kJ/mol

所以QW=W×HW=187.73×7583.895=1415276.758kJ/h

4.4进料带入热量Qf

Qf=F×Hf

xf=0.194,T=82℃

Hf=6314.114kJ/mol

所以Qn=F×Hf=234.38×6314.114=1479902.004kJ/h

4.5回流带入热量QL

QL=L×HL

XL=0.96499,T=65.76℃

HL=5411.95kJ/mol

所以QL=L×HL=91.06×5411.95=492812.16kJ/h

4.6塔釜加热量QB

釜液中甲醇的含量很小,可视为纯水。

在99.9℃时,水的比汽化热为2300kJ/kg

摩尔汽化热为  2300×18.02=41446kJ/kmol

组成为Xw=0.00024的甲醇水溶液的热量为

QB=41446×137.71=5707528.66kJ/h

设备向外界散发的热损失QN

QN=0.17×QB=5707528.66×0.17=970279.8722kJ/h

4.7总的热量衡算

QL+QF+QB=QV+QW+QN

QV+QW+QN=7371429.8062kJ/h

QL+QF+QB=7680242.864kJ/h

将以上数据列入下表:

热量衡算表-2

项目

数量(kJ/h)

项目

数量(10kJ/h)

进料带入热量QF

塔釜加热量QB

回流带入热量QL

合计

1479902.044

492812.16

5707528.66

7680242.864

塔顶蒸汽带出热量QV

塔底产品带出热量QW

散发的热损失QN

合计

4985873.176

1415276.758

970279.8722

7371429.8062

五、主要设备尺寸计算

5.1塔和塔板工艺尺寸计算

VS=

m3/s

LS=

m3/s

可得:

Lh=Ls×3600=2.7576m3/h

Vh=Vs×3600=3618m3/h

5.2塔径

取HT=0.45m,取板上清液hL=0.06m

HT-hL=0.39m

由Umax=C

查史密斯关联图

C20=0.084

取安全系数为0.7,则空塔气速为

u=0.7umax=0.7×2.069=1.4486m/s

D=

按标准塔径圆整后为D=1.0m

塔截面积为

实际空塔气速为

u=1.005/0.785s=1.280m/s

5.3精馏塔高度的计算

精馏段有效高度为

Z精=(N精-1)HT=(6-1)HT=5×0.45=2.25m

提馏段有效高度为

Z提=(N提-1)HT=(5-1)×0.4=4×0.45=1.8m

在进料板上方开一人孔,其高度为0.8m

故精馏塔的有效高度为

Z=Z精+Z提+0.8=2.25+1.8+0.8=4.85m

5.4溢流装置

因塔径D=1.0m<2.2m,可选用单溢流弓形降液管,采用凹形受液盘.

5.5堰长

取溢流堰长LW=0.66×D=0.66m

5.6堰高

由 hW=hL-hOW

选用平直堰,堰上液层高度hOW由式计算,即

    how=

×E(

)2/3

取 E=1

how=

×(

)2/3=0.007m

取板上清液高度 hL=0.06m

hW=hL-how=0.06-0.007=0.053m

弓形降液管宽度Wd与降液管面积Af

由lW/D=0.66,查弓形降液管的宽度与面积图得:

Wd/D=0.124Af/AT=0.0722

Wd=0.124×D=0.124×1.0=0.124m

Af=0.0722×

×D2=0.0722×AT=0.0567㎡

降液管停留时间以检验降液管面积:

T=

=

=23.02s>5s

故符合要求。

降液管底隙高度h0

取降液管底的流速为

=0.08m/s,根据h0=Lh/(lw×

×3600)计算得:

h0=

=0.0145m

hw-h0=0.053-0.0145=0.03851m>0.006m

故降液管底隙高度设计合理,符合要求

选用凹形受液盘,深度h′=50nm

5.7塔板的分块

因为D≥800mm,故塔板采用分块式,查表得,塔板分为3块。

如下图所示:

塔板分块示意图

边缘区宽度确定

取WS=

=0.065m,WC=0.035m

开孔区面积计算

开孔区面积按下式计算,即

Aa=2(X

+

Sin-1

其中  X=D/2-(Wd+Ws)=1.0/2-(0.124+0.065)=0.311m

R=D/2-WC=1.0/2-0.035=0.465m

故   Aa=2(X

+

Sin-1

=2×(0.311×

+

Sin-1

=0.532m2

5.8筛孔计算及其排列

取筛孔的孔径d0为5mm,正三角形排列,碳钢板原为δ=3mm

取t/d0=3.0

孔心距t=3.0×5.0=15.0mm

筛孔数目

n=1.155Ao/t2=1.155×0.532/0.0152=2731个

开孔率为Φ=0.907(do/t)2=0.907(0.005/0.015)2=0.0101

气体通过阀孔的气速为

u0=Vs/A0=1.005/(0.0101×0.532)=18.07m/s

5.9塔高的计算

H=(n-nF-nP-1)HT+nFHF+nPHP+HD+HB+H1+H2

H——塔高,m;

n——实际塔板数(不包括加热釜),11块;

nF——进料板数,3个;

HF——进料孔处板间距,0.45m;

nP——人孔数(包括塔顶塔底空间所开人孔;塔顶塔底空间各一个,进料板处一个,见工艺图),5个;

HB——塔底空间高,3m;

HP——设人孔处的板间距,0.8m;

HD——塔顶空间高,取1.2m;

HT——板间距,0.45m;

H1——封头高度,0.5m;

H2——裙座高度;3m;

求得:

H=13.9m

六、辅助设备的选择

塔进出口管径的选择

6.1蒸汽管

Vs=

d2u,d为蒸汽管的直径,u为气体速度,取为30m/s

d=

=

=0.2065=206.5mm

取Φ219×6.0系列的管子   

6.2回流管

取回流速度u=0.5m/s,LS=0.000766m3/s

d=

=

=0.0442m=44.2mm

取Φ50×2.5系列的管

6.3进料管

u=0.5m/s,泡点时

㎏/m3

d=

=

=0.0623m=62.3mm

取Φ50×2.5系列的管

6.4塔釜液出口

Tw=99.8℃时查表:

ρ水=958.4㎏/m3,ρ乙醇=785㎏/m3

=0.00426

ρLWD=

=957.49㎏/m3

Ws=

=0.00098m3/s

取u=0.7m/s

d=

=

=0.042m=42mm

取Φ68×3.0系列的管

6.5间接蒸汽加热管

取u=20m/s,进气为3个大气压,t=132.8℃

查表得ρ=1.618㎏/m3

d=

=

=0.165m=165mm

取Φ168×5.0系列的管

管径的选

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2