高压直流输电的建模与仿真分析.docx

上传人:b****0 文档编号:18268052 上传时间:2023-08-14 格式:DOCX 页数:58 大小:774.22KB
下载 相关 举报
高压直流输电的建模与仿真分析.docx_第1页
第1页 / 共58页
高压直流输电的建模与仿真分析.docx_第2页
第2页 / 共58页
高压直流输电的建模与仿真分析.docx_第3页
第3页 / 共58页
高压直流输电的建模与仿真分析.docx_第4页
第4页 / 共58页
高压直流输电的建模与仿真分析.docx_第5页
第5页 / 共58页
高压直流输电的建模与仿真分析.docx_第6页
第6页 / 共58页
高压直流输电的建模与仿真分析.docx_第7页
第7页 / 共58页
高压直流输电的建模与仿真分析.docx_第8页
第8页 / 共58页
高压直流输电的建模与仿真分析.docx_第9页
第9页 / 共58页
高压直流输电的建模与仿真分析.docx_第10页
第10页 / 共58页
高压直流输电的建模与仿真分析.docx_第11页
第11页 / 共58页
高压直流输电的建模与仿真分析.docx_第12页
第12页 / 共58页
高压直流输电的建模与仿真分析.docx_第13页
第13页 / 共58页
高压直流输电的建模与仿真分析.docx_第14页
第14页 / 共58页
高压直流输电的建模与仿真分析.docx_第15页
第15页 / 共58页
高压直流输电的建模与仿真分析.docx_第16页
第16页 / 共58页
高压直流输电的建模与仿真分析.docx_第17页
第17页 / 共58页
高压直流输电的建模与仿真分析.docx_第18页
第18页 / 共58页
高压直流输电的建模与仿真分析.docx_第19页
第19页 / 共58页
高压直流输电的建模与仿真分析.docx_第20页
第20页 / 共58页
亲,该文档总共58页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

高压直流输电的建模与仿真分析.docx

《高压直流输电的建模与仿真分析.docx》由会员分享,可在线阅读,更多相关《高压直流输电的建模与仿真分析.docx(58页珍藏版)》请在冰点文库上搜索。

高压直流输电的建模与仿真分析.docx

高压直流输电的建模与仿真分析

哈尔滨理工大学毕业设计(论文)任务书

学生姓名:

陈波学号:

0903010930

学院:

电气与电子工程学院专业:

电气工程及其自动化

任务起止时间:

2013年2月25日至2013年6月20日

毕业设计(论文)题目:

高压直流输电的建模与仿真分析

毕业设计工作内容:

1.查阅国内外相关参考文献,要求阅读30篇以上文献,了解当今电力系统的发展状况,及目前研究的热点问题;

2.对高压直流输电技术的发展及现状进行综述;

3.熟悉并掌握高压直流输电的基本原理;

4.熟悉Matlab中Simulik的使用方法及其在电力系统中的实际应用;

5.实现对高压直流输电系统的数字仿真;

6.对仿真结果进行分析;

7撰写论文,准备答辩。

资料:

1张洪信,赵清海.ANSYS有限元分析完全自学手册.机械工业出版社,2008

2盛剑霓.电磁场数值分析.科学出版社,1984

3冯慈章.马西奎.工程电磁场导论.高等教育出版社,2007

贺德馨.风洞天平.国防工业出版社,2001

指导教师意见:

 

签名:

年月日

系主任意见:

 

签名:

年月日

教务处制表

高压直流输电的建模与仿真分析

摘要

高压直流输电(HVDC)具有线路输送容量大、造价低、损耗小、电力系统间的非同步联网能力强等优点,而且,直流输电不存在交流输电的稳定问题,有利于远距离大容量送电。

并且由于高压直流输电具有经济性好,适用于两个不同频率的系统互联,能够远距离大功率输电等优点,这些都决定高压直流输电在将来的输电系统中将起着举足轻重的作用。

对于我国来说,直流输电技术在西电东输以及电力系统全国联网工程中将会起到重要的作用。

在此背景下,研究HVDC的结构、运行原理及控制方法,对HVDC进行建模与仿真,分析系统的稳态、动态特性等显得非常重要。

本文介绍了高压直流输电的历史背景及在国内外的发展状况,分析了高压直流输电的控制基本理论,利用Matlab中的Simulink对HVDC进行建模,并在此模型基础上进行了系统的稳态、直流线路故障、逆变器交流侧单相接地故障及两相接地故障仿真,得出相应的仿真波形,验证了HVDC模型的有效性和正确性。

关键词 高压直流输电系统;Matlab/Simulink;仿真模型;仿真分析

HVDCModelingandSimulation

Abstract

HVDCtransmission(HVDC)transmissionlineswithlargecapacity,lowcost,lowloss,electricalsystems,asynchronousnetworkingability,etc.,andthatthereisnoexchangeofHVDCpowertransmissionstability,conducivelong-distancebulkpowertransmission.AndbecauseHVDChasgoodeconomyfortwodifferentfrequenciesSystemsInterconnection,tolong-distancepowertransmission,etc.,whicharedecidedHVDCtransmissionsysteminthefuturewillplayadecisiverole.Formycountry,HVDCtransmissiontechnologyinthewesttotheeastaswellasthenationalpowersysteminterconnectionprojectwillplayanimportantrole.

Inthiscontext,researchHVDCstructure,operationprincipleandcontrolmethods,theHVDCmodelingandsimulation,analysissystem,thesteady-stateanddynamiccharacteristicsisveryimportant.ThisarticledescribesthehistoricalbackgroundofHVDCanddevelopmentathomeandabroad,andtoanalyzetheHVDCcontrolbasictheory,useMatlabSimulinkmodelforHVDCandinthismodelbasedonasteady-statesystemDClinefault,theinverterACsidesingle-phasegroundfaultand​​two-phasegroundfaultsimulation,drawthecorrespondingsimulationwaveformstoverifythevalidityandcorrectnessofHVDCmodel.

Keywords HVDC;Matlab/Simulink;SimulationModel;SimulationAnalysis

不要删除行尾的分节符,此行不会被打印

摘要

Abstract

千万不要删除行尾的分节符,此行不会被打印。

在目录上点右键“更新域”,然后“更新整个目录”。

打印前,不要忘记把上面“Abstract”这一行后加一空行

第1章绪论

1.1课题背景

随着国民经济的持续、高速增长,电力需求日益旺盛,电力工业的发展速度加快。

2004年新增发电装机容量505GW,全国发电总装机容量达到440GW;2005年新增发电装机容量约70GW,全国发电总装机容量突破500GW;预计到2010年、2020年,全国发电总装机容量将分别达到700GW和1200GW。

新增电力装机有很大数量在西部大水电基地和北部的火电基地。

这些集中的大电站群装机容量大,距离负荷中心远。

如金沙江的溪洛渡、向家坝水电厂,总装机容量达到18.6GW,计划送电到距电厂1000~2000km的华中、华东地区;云南的水电有约20GW容量要送到1500km外的广东;筹划中的陕西、山西、宁夏、内蒙古的大火电基地将送电到华北、华中和华东的负荷中心,距离近的约1000km,远的超过2000km[1]。

在这种背景下,要求输电工程具有更高的输电能力和输电效率,实现安全可靠、经济合理的大容量、远距离送电。

特高压直流输电是满足这种要求的关键技术之一。

1.2高压直流输电的发展概况

1.2.1国外高压直流输电的发展概况

世界上最早的直流输电是用直流发电机直接向直流负荷供电[2]。

1882年,法国物理学家德普勒用装设在米斯巴赫煤矿中的直流发电机,以1.5~2.0kV电压,沿着57km千米的电报线路,把电力送到在慕尼黑举办的国际展览会上,完成了有史以来的第一次直流输电实验。

1912年采用直流发电机串联的方法,将直流输电的电压、功率和距离分别提高到125kV、20MV和225km。

由于直流电源和负荷均采用串联方法,运行方式复杂,可靠性差,因此直流输电在当时没有得到进一步发展。

随着三相交流发电机、感应电动机和变压器的迅速发展,直流输电很快被交流输电所取代。

直到20世纪50年代大功率汞弧阀的问世,直流输电技术才真正在工程中得到应用。

但汞弧阀制造技术复杂、价格昂贵、逆弧故障率高,可靠性较低、运行维护不变,使直流输电的发展仍然受到限制。

从1954年瑞典投入世界上第一个工业性直流输电工程起,到1977年最后一个采用汞弧阀的直流输电工程建成止,世界上也仅有12项采用汞弧阀的直流输电工程投入运行。

20世纪70年代后,电力电子技术和微电子技术迅速发展,高压大功率晶闸管、微机控制和保护、光电传输技术、水冷技术、氧化锌避雷器等新技术,在直流输电工程中得到了广泛应用,促使直流输电技术得到了较快的发展。

1954年~2000年,全世界投入的高压直流输电工程总数近100个,总容量超过70000MW.其中±450kV~±600kV直流输电工程有20多条。

直流输电工程输送总容量的年平均增长率,在1960~1975年为460MW/年,1976~1980年为1500MW/年,1981~1998年为2096MW/年,2000年后的增长率更大。

1.2.2国内高压直流输电的发展概况

20世纪60年代开始,国内制造和运行部门的研究单位开始对直流输电进行实验室研究,1974年在西安高压电器研究所建成一个8.5kV、200A、1.7MW、采用6脉动换流器的背靠背换流试验站。

1977年在上海利用杨树浦发电厂到九龙变电所之间报废的交流电缆,建成了一个采用6脉动换流器的31kV、150A、4.65MW、8.6km的直流输电实验工程。

以上工作为我国直流输电工程的发展打下了基础、做好了技术准备[3]。

1987年全部采用国内技术的舟山直流输电工程投入运行,从此直流输电开始在我国得到了应用和发展,到2010年我国已有13个直流输电工程投入运行[4],这些工程主要参数见表1-1。

表1-1我国已建成的直流工程

序号

工程名称(简称)

电压(kV)

功率(MW)

距离(km)

投运年份

备注

1

舟山

-100

50

42

1987

2

葛洲坝——南桥

±500

1200

1045

1989极1

1990极2

 

3

天生桥——广州

±500

1800

960

2000极1

2001极2

 

4

嵊泗

±500

60

6.5

2002

5

龙泉——政平

±500

3000

860

2002极1

2003极2

 

6

荆州——惠州

±500

3000

960

2004

7

安顺——肇庆

±500

3000

880

2004

8

灵宝

120

360

2005

背靠背

9

宜都——华新

±500

3000

1075

2006

10

兴仁——深圳

±500

3000

1194

2007

11

高岭

±125

1500

2008

背靠背

12

云南——广东

±800

5000

1400

2009极1

2010极2

 

13

向家坝——上海

±800

6400

2000

2009极1

2010极2

 

(1)舟山直流输电工程。

本工程是我国第一个全部依靠自己的力量建设的直流输电工程,它解决了浙江大陆向舟山本岛的输电问题,同时具有向建设大型直流输电工程的工业性实验性质。

1987年进行调试并投入运行,1989年正式投入商业运行,1998年对设备进行了更新和改造,采用微机型控制保护装置取代了原来的数控型,并增加潮流反送的功能,使舟山工程具有双向供电的能力。

(2)葛洲坝——南桥直流输电工程。

该工程设计和全部设备由国外承包商承担。

由原BBC公司总承包,西门子公司提供南桥换流站的全部一次设备。

是我国第一个远距离直流输电和联网工程。

葛洲坝——南桥直流输电工程为双极±500kV、1200A、1200MW、输送距离1045km。

整流站在葛洲坝水电站附近的葛洲坝换流站,逆变站在上海的南桥换流站。

1989年9月,极1投入运行;1990年8月,全部工程建成,并投入商业运行。

(3)天生桥——广州直流输电工程。

该工程西起天生桥水电站附近的马窝换流站,东至广州的北郊换流站,输电距离960km,采用±500kV、1800A、1800MW。

工程于2000年12月1极投入运行,2001年工程全部建成。

(4)嵊泗直流输电工程。

嵊泗直流输电工程是我国自行设计和建造的双极海底电缆直流工程。

工程为双极,±50kV、600A、60MW,可双向送电。

(5)龙泉——征平直流输电工程。

本工程是三峡水电站向华东电网的第一个送电工程,工程为双极±500kV、3000A、3000MW。

全长860km,工程于2002年12月极1投入运行,2003年5月全部建成。

(6)荆州——惠州直流输电工程。

本工程是三峡水电站向广东的送电和实现华中和华南电网的联网工程。

工程为双极±500kV、3000A、3000MW。

直流架空线路从湖北的荆州换流站到广东的惠州换流站,全长960km。

2004年2月极1投入运行,6月双极全部建成。

(7)安顺——肇庆直流输电工程。

本工程是云南贵州的电力东送工程,直流架空线路由贵州的安顺换流站到广东的肇庆换流站,全长880km。

工程为双极±500kV、3000A、3000MW,2004年6月建成。

(8)宝灵背靠背直流工程。

本工程实现华中与西北两大电网联网,其主要参数为直流120kV、360MW、3000A。

换流站设备全部采用国产设备,工程已于2005年建成。

(9)宜都——华新直流输电工程。

本工程是三峡水电站向华东电网的第二个送电工程。

全长1075km,额定参数与龙泉——征平直流输电工程相同。

2006年投入运行。

(10)兴仁——深圳直流输电工程。

本工程是贵州——广东第2回直流工程,全长1194km,工程为双极±500kV、3000A、3000MW,2007年投运。

(11)高岭背靠背直流输电工程。

本工程是华北和东北两个500kV电网之间的联网工程。

本工程为双极、±125kV、3000A、两组750MW换流器,总容量1500MW,与2008年底建成投运。

已成为世界上最大的背靠背换流站,最终容量为3000MW。

设备全部由国内提供。

此外,为实现西南水电以及大型火电基地电力送出,±800kV云南——广东直流输电工程,额定容量5000MW,输电距离1400km;±800kV向家坝——上海直流输电工程,额定容量6400MW,输电距离2000km。

这两个工程均于2009年建成第一极,2010年全部建成。

1.3高压直流输电的特点

直流输电由于自身的结构及性能,具有以下特点[5]:

1.3.1经济性

高压直流输电的合理性和适用性在远距离大容量输电中已得到明显的表现。

由于直流输电线路的造价和运行费用比交流输电低,而换流站的造价和运行费用均比交流变电所要高。

因此对于同样输电容量,输送距离越远,直流比交流的经济型越好。

如下图可以看出当输电距离大于等价距离时,直流输电的经济性优势便可以体现出来,并且输电距离越远其经济性越好。

在实际应用中,对于架空线路此等价距离为600~700km,电缆线路等价距离则可以降低至20~40km。

另一方面,直流输电系统的结构使得其工程可以按照电压等级或级数分阶段投资建设。

这也同样体现了高压直流输电经济性方面的特点。

1.3.2互联性

交流输电能力受到同步发电机间功角稳定问题的限制,且随着输电距离的增大,同步机间的联系电抗增大,稳定问题更为突出,交流输电能力受到更大的限制。

相比之下,直流输电不存在功角稳定问题,可在设备容量及受段交流系统允许的范围内,大量输送电力。

  交流系统联网的扩展,会造成短路容量的增大,许多场合不得不更换断路器,而选择合适的断路器又十分困难。

而采用直流对交流系统进行互联时,不会造成短路容量的增加,也有利于防止交流系统的故障进一步扩大。

因此对于已经存在的庞大交流系统,通过分割成相对独立的子系统,采用高压直流互连,可有效减少短路容量,提高系统运行的可靠性。

  直流输电所连的两侧电网无须同步运行,原因是直流输电不存在传输无功问题,两侧的系统之间没有无功的交换,也不存在交流系统中频率的问题。

由于直流输电的这个特性,它可以实现电网的非同步互连。

进而也可实现不同频率交流电网的互连,起到频率变换器的作用。

1.3.3控制性

直流输电另一个重要特点是潮流快速可控,可由于锁链交流系统的稳定与频率控制。

直流输电的换流器为基于电力电子器件构成的电能控制电路,因此其对电力潮流的控制迅速而精确。

且对于双端直流输电而言,可迅速实现潮流的反转。

潮流反转有正常运行中所需要的慢速潮流反转和交流系统发生故障需要紧急功率支援时的快速潮流反转。

其迅速的潮流控制对于所连交流系统的稳定控制,交流系统正常运行过程中应对负荷随机波动的频率控制及故障状态下的频率变动控制都能发挥重要作用。

1.4高压直流输电的缺点

(1)换流站设备多、结构复杂、造价高、损耗大、运行费用高;换流站比变电站投资大。

直流输电环节中的换流站的设备比交流变电站复杂,除换流变外,还有可控硅换流器,以及换流器的其他附属设备,这些设备的造价都非常高昂,因此换流站的投资高于同等容量的交流变电站。

(2)换流器产生大量谐波。

换流器对交流侧来说,除了是一个负荷(在整流侧)或电源(在逆变站)以外,它还是一个谐波电流源。

它畸变交流电流波形,向交流系统发出一系列的高次谐波电流,同时也畸变了交流电压波形。

为了减少流入交流系统的谐波电流,保证换流站交流母线电压的畸变率在允许的范围内,必须装设交流滤波器。

另外,换流器对直流侧来说,除了是一个电源(在整流侧)或负荷(在逆变站)以外,它还是一个谐波电压源。

它畸变直流电压波形、向直流侧发出一系列的谐波电压,在直流线路上产生谐波电流。

为了保证直流线路上的谐波电流在允许范围内,在直流侧必须装设平波电抗器和直流滤波器。

(3)换流器无功消耗量大。

换流器吸收无功功率:

30%~50%Pd(整流器);40%~60%(逆变器)(表示输电线路传输的功率)。

由此看来虽然直流输电线路理论上不消耗无功功率,但是总体来说高压直流输电还是要消耗大量无功功率的,换流站中的换流器会消耗大量无功,因此必须在换流站中进行无功补偿,这是换流站造价远高于同容量的交流变电站的一个直接原因。

(4)在某些运行方式下,对地下(或海中)物体产生电磁干扰和电化学腐蚀。

(5)直流断路器(DCcircuitbreaker)造价高,技术复杂。

在交流系统中,电流每周波有两次自然过零点,交流断路器就是充分利用此时机熄灭电弧,完成介质恢复。

而直流系统不存在自然过零点。

因此,开断直流电路就要困难许多。

因此,直流断路器的造价往往高于交流断路器,并且其稳定性能不如交流断路器。

直流断路器的制造工艺及其性能直接影响高压直流输电的容量与形式,在直流多站系统中,为建立直流系统之间的联络,需要性能更好的直流断路器[6]。

1.5高压直流输电研究的热点问题

高压直流输电已经成为我国电网的重要组成部分,国内目前研究的高压直流输电热点问题有:

(1)高压直流输电系统的稳定性分析。

(2)特高压直流输电系统孤岛运行研究。

(3)高压直流输电换相失败故障诊断研究。

(4)高压直流输电中的谐波分析。

(5)高压直流输电系统次同步震荡阻尼特性研究。

(6)高压直流输电线路故障解析与保护研究。

(7)新型换流变压器在直流输电系统中运行特性的研究。

第2章高压直流输电控制基本原理

2.1高压直流输电控制系统分层结构

高压直流输电控制系统是保证直流输电系统稳定高效运行的关键[7]。

高压直流输电控制系统根据功能、优先级等原则将所有控制环节划分为不同的等级层次。

采用分层结构利于对复杂的高压直流输电控制系统进行分析、提升运行系统维护和操作的灵活性并降低了单个控制环节发生故障对系统其它环节的影响,增强系统运行的稳定性和安全性。

图2-1高压直流输电控制系统分层结构

高压直流输电控制系统分层结构如图2-1所示,分为系统控制、双极控制、极控制、换流器控制、单独控制以及换流阀控制几部分。

高压直流输电系统控制作用于换流站,换流站通过双极控制环节控制正负两个换流极,每个换流极通过极控制实现正常运行。

极控制包括换流器控制及单独控制,换流器控制环节控制换流阀的运行状态实现交直流转换,换流阀控制与单独控制作用于被控对象,如晶闸管、换流变压器等设备。

各层的控制作用采用单向传递方式,高层次等级控制低层次等级。

系统控制级是高压直流输电控制系统的最高层次等级,其主要功能为通过通信系统上传直流输电系统运行参数并接收电力系统调度中心运行指令,根据额定功率指令对各直流回路的功率进行调整和分配以保持系统运行在额定功率范围内,实现潮流反转控制以及功率调制、电流调制、频率控制、阻尼控制等控制方式,当出现故障或特殊情况时还可以进行紧急功率支援控制。

双极控制级的主要功能是同时控制并协调高压直流输电系统的正负极运行,根据系统控制级输出的功率指令,计算分配正负极的功率定值并在运行过程中控制功率的传输方向,平衡正负极电流并控制交直流系统的无功功率、交流系统母线电压等。

极控制级根据双极控制系统输出的功率指令,计算输出电流值,并将该电流值作为控制指令输出至换流器控制级进行电流控制,控制正极或负极的启动、停运以及故障处理。

极控制级还可以实现不同换流站同极之间的电流指令值、交直流系统运行状态、各种参数测量值等信息的通信等。

换流器控制级的主要功能是控制换流器的触发以保持系统正常运行,并根据实际运行要求实现定电流控制、定电压控制等控制方式。

换流器是高压直流输电系统实现交直流转换的重要设备,换流器触发控制通过调整换流器触发角控制高压直流输电交直流转换过程并保证高压直流输电系统输出预期的功率或直流电压,对高压直流输电系统的安全稳定运行具有重要作用。

因此换流器触发控制是换流器控制级的核心部分,是高压直流输电控制系统的重要研究内容。

单独控制级的主要功能是控制换流变压器分接头档位切换以调节换流变压器输出电压,并监测和控制换流单元冷却系统、辅助系统、交直流开关场断路器、滤波器组等设备的投切状态。

单独控制级的核心部分是换流变压器分接头控制,换流变压器分头控制通过调整换流变压器的换流阀侧(简称阀侧)电压保持高压直流输电系统换流器触发角或直流电压的稳定,提高高压直流输电系统的运行效率。

由于换流变压器在高压直流输电系统中起到隔离交直流系统的作用,并对高压直流输电系统的稳定运行具有重要作用。

因此,换流变压器分接头控制是高压直流输电控制系统的重要研究内容。

换流阀控制级将换流器控制级输出的触发角信号转换为触发脉冲来控制换流器中晶闸管的导通关断,并监测晶闸管等元件的运行状态,生成显示、控制、报警等信号。

根据上述高压直流输电控制系统分层结构的分析可知,换流器触发控制与换流变压器分接头控制是高压直流输电控制系统的核心组成,对高压直流输电系统的稳定运行具有关键性作用。

因此,针对换流器触发控制与换流变压器分接头控制进行仿真建模是高压直流输电控制系统的重要研究内容。

2.2高压直流输电控制原理

为便于分析高压直流输电系统的控制原理,根据直流输电原理做出高压直流输电系统等效电路,如图3.3所示,等效电路包括整流器、直流输电线路和逆变器三部分,整流器将交流电流转换为直流电流,通过直流输电线路送至逆变器转换为交流电。

为便于后续研究,以N点为界将高压直流输电等效电路分为两部分,N点左侧为整流侧,N点右侧包括输电线路和逆变器(简称逆变侧)。

根据基尔霍夫定律分析等效电路可知:

图2-2高压直流输电系统等效电路图

直流电流

:

(3-1)

整流侧伏安特性:

(3-2)

逆变侧伏安特性:

(3-3)

其中,

与交流系统电势相关:

(3-4)

式中,

-整流侧换流变压器阀侧空载电压,

-逆变侧换流变压器阀侧空载电压,

-整流器直流电压,

-逆变器直流电压,

整流侧触发角,

-逆变侧超前

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2