建筑给排水工程课程设计.doc

上传人:聆听****声音 文档编号:1836860 上传时间:2023-05-01 格式:DOC 页数:21 大小:336.54KB
下载 相关 举报
建筑给排水工程课程设计.doc_第1页
第1页 / 共21页
建筑给排水工程课程设计.doc_第2页
第2页 / 共21页
建筑给排水工程课程设计.doc_第3页
第3页 / 共21页
建筑给排水工程课程设计.doc_第4页
第4页 / 共21页
建筑给排水工程课程设计.doc_第5页
第5页 / 共21页
建筑给排水工程课程设计.doc_第6页
第6页 / 共21页
建筑给排水工程课程设计.doc_第7页
第7页 / 共21页
建筑给排水工程课程设计.doc_第8页
第8页 / 共21页
建筑给排水工程课程设计.doc_第9页
第9页 / 共21页
建筑给排水工程课程设计.doc_第10页
第10页 / 共21页
建筑给排水工程课程设计.doc_第11页
第11页 / 共21页
建筑给排水工程课程设计.doc_第12页
第12页 / 共21页
建筑给排水工程课程设计.doc_第13页
第13页 / 共21页
建筑给排水工程课程设计.doc_第14页
第14页 / 共21页
建筑给排水工程课程设计.doc_第15页
第15页 / 共21页
建筑给排水工程课程设计.doc_第16页
第16页 / 共21页
建筑给排水工程课程设计.doc_第17页
第17页 / 共21页
建筑给排水工程课程设计.doc_第18页
第18页 / 共21页
建筑给排水工程课程设计.doc_第19页
第19页 / 共21页
建筑给排水工程课程设计.doc_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

建筑给排水工程课程设计.doc

《建筑给排水工程课程设计.doc》由会员分享,可在线阅读,更多相关《建筑给排水工程课程设计.doc(21页珍藏版)》请在冰点文库上搜索。

建筑给排水工程课程设计.doc

建筑给水排水工程课程设计

徐州市某办公楼建筑给水排水工程设计

学生姓名

程鹏飞

学院名称

环境工程学院

学号

20121701132

班级

12给水

(1)班

专业名称

给水排水工程

指导教师

王宏

2014年

6月

26日

目录

1绪论 1

1.1本课题研究背景 1

1.2.1意义 1

1.2.2目的和作用 1

1.3技术要求及指导思想 1

2设计任务及设计资料 2

2.1课程设计内容 2

2.2课程设计的原始数据 2

2.2.1图纸资料 2

2.2.2文字资料 2

3设计过程说明 3

3.1给水工程 3

3.2消防给水 4

3.3排水工程 4

4设计计算 4

4.1室内给水系统计算 4

4.1.1给水用水定额及时变化系数 4

4.1.2最高日用水量 4

4.1.3最高日最大时用水量 5

4.1.4设计秒流量按公式 5

4.1.5屋顶水箱容积 5

4.1.6地下室内贮水池容积 6

4.1.7室内所需的压力 6

4.1.7.11~3层室内所需的压力 6

4.1.7.24~6层室内所需的压力 8

4.1.8选泵...................................................8

4.2消火栓给水系统计算 9

4.2.1消火栓的布置 9

4.2.2水枪喷嘴处所需的水压 9

4.2.3水枪喷嘴的出流量 10

4.2.4水带阻力 10

4.2.5消火栓口所需的水压 10

4.2.6校核 10

4.2.7水力计算 10

4.2.8消防水箱 12

4.2.9消防贮水池 12

4.3建筑内部排水系统计算 12

4.3.1设计秒流量 12

5结语 16

6参考文献 17

1绪论

1.1本课题研究背景

给水排水工程是现代化城市基础设施建设与工业企业建设的重要组成部分之一,它的建设与发展直接关系到城市(镇)居民的生活水平、生活质量的提高与工业企业规模的扩大与发展,但同时也受到当地自然资源状况、经济发展水平、文化背景与发展历史的限制。

随着我国城市化步伐的加速和工业经济的发展,城市居民生活用水和工业企业用水需求量日益增加,对用水水质的要求也日益严格。

但是,我国是一个人均水资源量十分贫乏的国家,目前严重的水污染使得部分水体丧失原有功能,更加剧了水资源的紧张局面,缺水已成为城市与工业发展最为重要的限制条件之一,有效利用现有的有限水资源成为摆在给水排水工程技术人员面前的一个重要而紧迫的课题。

1.2课题的意义与目的

1.2.1意义

工程设计是对拟建工程的实施在技术和经济上所进行的全面而详尽的安排,是联系项目决策与工程实体的桥梁,是工程建设最为重要的阶段。

优秀的工程设计不仅是提升工程技术水平和保证工程质量的基础,而且是节约工程投资、改善工程经济条件的保证。

通过设计训练,不仅能够学到工程设计的基本方法,而且能够学会运用工程经济思想综合解决工程问题。

1.2.2目的和作用

课程设计是高等院校培养具有创新精神和实践能力的高级专业人才不可缺少的重要实践教学环节,是教学计划的重要组成部分,是对我们学生进行综合训练的重要阶段。

通过课程设计,能够培养我们综合运用专业知识及相关知识的能力和工程实践能力,在指导教师的帮助下,在查阅中外文献、资料收集及调查研究、计算机编程及应用、工程设计及图纸绘制、设计计算说明书的撰写等方面的能力得到一定程度的提高,进而提高适应实际工作需要的能力。

1.3技术要求及指导思想

适用、经济、卫生、安全是保证建筑给排水工程设计质量,满足生产、生活和消防的基本要求,具体应体现在下列各方面:

(1)给水方面,要厉行节约用水,建筑给水工程设计中,如经济技术比较合理时,应尽可能采用循环或重复利用的给水系统,及其他有效的节水节能措施。

如充分利用城市管网的水压,在多层或高层建筑的低层部分由市政管网直接供水。

另外,保护饮用水水质卫生是保障人民身体健康的重要保证,应当采取有效地防止饮用水回流污染的措施。

(2)排水方面,应根据污水性质、浓度、水量并结合室外污水处理情况,尽可能分流排水,以便回收有用物质或为污水处理提供便利条件。

(3)消防系统设计要做到保障安全、技术先进、经济合理,其中最重要的是能够确保人生与财产的安全。

2设计任务及设计资料

2.1课程设计内容

1)建筑内部生活和消防给水系统。

2)建筑内部生活污废水排水系统。

3)室内热水供应系统。

4)室内消防供应系统。

2.2课程设计的原始数据

2.2.1图纸资料

建筑首层平面图;建筑标准层平面图、建筑非标准层平面图、地下室平面图、顶层平面图、建筑立面图、必要的剖面图、卫生间大样图等。

2.2.2文字资料

1)本建筑所在地区徐州市。

2)城市给水管网管径200mm,管顶埋深1m,城市可靠供水压15mH2O,距离建筑物外墙30m。

3)城市排水管网管径400mm,管底埋深3m,距离建筑物外墙25m。

4)冰冻线深度24cm。

3设计过程说明

3.1给水工程

根据设计资料,已知室外给水管网常年可保证水压为150kPa,故室内给水拟采用上、下分区供水方式。

即1~2层及地下室由室外给水管网直接供水,采用下行上给方式,3~6层为设水泵、水箱联合供水方式,管网上行下给。

因为市政给水部门不允许从市政管网直接抽水,故在建筑物地下室内设贮水池,屋顶水箱设水位继电器自动启闭水泵。

本建筑为办公楼,设计采用一条引入管。

3.2消防给水

根据《高层民用建筑设计防火规范》GB50045-95(2005版)3.0.1条,本建筑属于二类建筑。

据7.1.1条,设室内、室外消火栓给水系统。

据7.2.2条,室内、外消火栓用水量分别为20L/s、20L/s,每根竖管最小流量10L/s,每支水枪最小流量5L/s。

据7.6条,可不设自动喷水灭火系统。

室内消火栓系统不分区,采用水箱和水泵联合供水的临时高压给水系统,每个消火栓处设直接启动消防水泵的按钮,高位水箱贮存10min的消防用水,消防泵及管道均单独设置。

每个消火栓口径为65mm单栓口,水枪喷嘴口径19mm,充实水柱10H2O,采用麻质水带直径65mm,长度25m。

消防泵直接从消防水池吸水,据《高层民用建筑消防设计防火规范》GB50045-95(2005版)7.3.3条,火灾延续时间2h计。

3.3排水工程

本建筑各层公共卫生间采用生活污水和生活废水合流制排放,经化粪池处理后,经环保部门同意后可直接排入城市排水管网。

4设计计算

4.1室内给水系统计算

4.1.1给水用水定额及时变化系数

查《建筑给水排水设计规范》GB50015-2003(2009年版),由规范中的表可知,办公楼每人每班的最高日生活用水定额为30~50L,小时变化系数Kh为1.5~1.2。

本设计取用水定额为40L/人·d,小时变化系数为1.5,使用时间为8h。

本建筑为办公楼,人数计算按200人计。

4.1.2最高日用水量

Qd=m·qd式(4.1)

式中Qd——最高日用水量;L/d

m——用水单位数;

qd——最高日生活用水定额。

则:

Qd=40×200=8000(L/d)=8(m3/d)

4.1.3最高日最大时用水量

Qh=.Qd/T·Kh式(4.2)

式中Qh——最大时用水量;L/d

T——建筑物用水时间;h

Kh——时变化系数;Kh=1.4

则:

Qh=8×1.5/8=1.5(m3/h)

4.1.4设计秒流量

qg=0.2αNg½式(4.3)

式中qg——计算管段的设计秒流量;L/S

Ng——计算管段卫生器具给水当量总数;

本工程为办公楼α=1.5

则:

qg=0.3Ng½

4.1.5屋顶水箱容积

本办公楼供水系统水泵自动启动供水。

据公式

V=Cqb/(4kb)式(4.4)

式中V——水箱的有效容积,m3;

qb——水泵出水量,m3/h;

Kb——水泵1h内启动次数,一般选用4~8次/h;

C——安全系数,可在1.5~2.0内选用。

每小时最大启动Kb为4~8次,取Kb为6次。

为保证供水安全,取安全系数C=2.0。

3~6层生活用冷水由水箱供给,1~2层的生活用冷水虽然不由水箱供给,但考虑市政给水事故停水,水箱仍应短时供下区用水(上下区设连通管),故水箱容积应按1~6层全部用水确定。

又因水泵向水箱供水不与配水管网连接,故选水泵出水量与最高日最大小时用水量相同,即qb=1.5m3/h。

水泵自动启动装置安全可靠,屋顶水箱的有效容积为:

V=Cqb/(4kb)=2.0×1.5/(4×6)=0.125m3

另:

考虑水泵自动启动装置不可靠,根据《建筑给水排水方式设计规范》GB50015—2003(2009年版)3.5.7条,不宜小于最大用水量的50%,则V≥1.5×50%=0.75m3,则:

屋顶水箱钢制,尺寸为1.0m×1.0m×1.0m,有效容积为0.75m3。

4.1.6地下室内贮水池容积

本设计上区设水泵、水箱联合供水的给水方式,因为市政给水管网不允许水泵直接从管网抽水,故地下室一层设贮水池。

其容积

且式(4.5)

式中V——贮水池的有效容积,m3;

Qb——水泵的供出水量,m3/h;

Qj——水池进水量,m3/h;

Tb——水泵最长连续运行时间,h;

Tt——水泵运行的间隔时间,h

Vs——生产事故备用水量,m3。

进入水池的进水管管径取DN20,按管中流速为0.9m/s估算进水量,则由给水铸铁管水力计算表知Qj=0.28L/s=1.01m3/h。

因无生产用水,故Vs=0。

水泵运行时间应为水泵灌满屋顶水箱的时间,在该时段屋顶水箱仍在向配水管网供水,此供水量及屋顶水箱的出水量。

按最高日平均小时来估算,为Qp=Qd/8=8/8=1m3/h.则

Tb=V/(Qb-Qp)=V/(qb-Qp)=0.75/(1.5-1)=1.5h=90min

贮水池的有效容积为V≥(Qb-Qj)Tb+Vs=(1.5-1.0)×1.5+0=0.75m3。

校核:

水泵运行间隔时间应为屋顶水箱向管网配水(屋顶水箱由最高水位下降到最低水位)的时间。

仍然以平均小时用水量估算,Tt=V/Qp=0.75/1=0.75h,QjTt=1.0×0.75=0.75m3,(Qb-Qj)Tb=(1.5-1.0)×1.5=0.75m3。

满足QjTt≥(Qb-Qj)Tb的要求。

另:

据《建筑给水排水设计规范》GB50015-2003(2009年版)3.7.3,如果没有详细的设计资料或为了方便设计,贮水池的调节容积亦可按最高日用水量的20%~25%确定。

如按最高日用水量的20%计,则V=8×0.2=1.6m3。

经比较,二者相差太大,考虑停水时贮水池仍能暂时供水,其容积按后者考虑,即贮水池的有效容积V=1.6m3。

生活贮水池钢制,尺寸为2m×2m×0.6m,有效水深0.4m,有效容积1.6m3。

4.1.7室内所需的压力

4.1.7.11~2层室内所需的压力

根据计算用图4-1,下区1~2层管网水力计算成果见表4-1。

图4-11~2层给水管网水力计算用图

表4-1低区1~2层室内给水管网水力计算表

管段

编号

卫生器具名称

当量总数

设计秒流量q

(L/s)

DN

(mm)

v

(m/s)

单阻i

(kPa)

管长(m)

沿程水头损失hy=iL

(kpa)

电热水器

大便器

小便器

洗手盆

洗脸盆

淋浴器

洗涤盆

0.75

0.5

0.5

0.5

0.75

0.75

1

∑N

0—1

1

0.75

0.15

15

0.75

0.564

3.0

1.692

1—2

1

3

2.25

0.45

25

0.70

0.180

3.0

0.540

2—3

1

3

2.25

0.45

25

0.70

0.180

2.1

0.378

3—4

1

3

3

3.75

0.58

25

0.90

0.350

1.8

0.630

4—5

1

3

3

2

4.75

0.65

25

1.00

0.440

1.5

0.660

5—6

1

3

3

2

2

6.75

0.78

32

0.75

0.200

4.2

0.840

6—7

2

6

6

4

4

13.5

1.10

32

1.00

0.350

38.4

13.44

∑hy=18.18kPa

低区1~2层室内给水系统所需水压的计算公式如下:

式(4.6)

式中H——建筑内给水系统所需的水压,kPa;

H1——引入管起点至最不利配水点位置高度所要求的静水压,kPa;

H2——引入管起点至最不利配水点的给水管路即计算管路的沿程与局部水头损失之和,kPa;

H3——水流通过水表时的水头损失,kPa;

H4——最不利配水点所需的最低工作压力,kPa。

那么H1==4.2+0.8-(-1.6)=6.6=66kPa(其中0.8为配水嘴距室内地秤的安装高度)。

H2=1.3×∑hy=1.3×18.18=23.634kPa

H4=50kPa

因用水量较小,所以水表选用LXS-32C旋翼湿式水表,其过载流量Qmax为12m3/h,qg=0.8L/s=2.88m3/h。

特性系数为Kb=12×12/100=1.44,则水表的水头损失hd=2.882/1.44=5.76kPa,满足正常用水时﹤24.5kPa的要求,即H3=5.76kPa。

表3-2水表水头损失允许值(kPa)

表型

正常用水时

消防时

旋翼式

<24.5

<49.0

螺翼式

<12.8

<29.4

室内所需的压力

H=H1+H2+H3+H4=66+23.634+5.76+50=145.39kPa

室内所需的水压小于市政给水管网工作压力150kPa,可以满足1~2层的供水要求,不再进行调整计算。

4.1.7.23~6层室内所需的压力

3~6层管网水力计算成果如表4-3所示,计算见下图4-2.1。

图4-2.13~6层给水管网水力计算用图

表4-33~6层室内给水管网水力计算表

管段

编号

卫生器具名称

当量

总数

设计秒流量q

(L/s)

DN

(mm)

v

(m/s)

单阻i

(kPa)

管长(m)

沿程水头损失hy=iL

(kpa)

电热水器

大便器

小便器

洗手盆

洗脸盆

坐便器

洗涤盆

0.75

0.5

0.5

0.5

0.75

0.75

1

∑N

0—4

1

0.5

0.10

15

0.60

1—2

1

0.5

0.10

15

0.60

2—3

1

1

1.25

0.25

20

0.65

3—4

1

2

2.0

0.40

25

0.80

4—5

2

2

2.5

0.47

25

0.80

5—6

1

2

2

3.25

0.54

25

0.80

6—10

1

2

2

3

4.75

0.65

25

1.00

7—8

2

2.0

0.30

20

0.79

0.422

1.5

0.633

8—9

2

2

3.0

0.50

25

0.80

0.30

1.8

0.540

9—10

3

2

2

4.5

0.64

25

1.00

0.446

2.1

0.940

10—11

1

2

3

2

2

3

2

9.25

0.91

32

0.89

11—12

2

4

6

4

4

6

4

18.5

1.21

32

1.10

12—13

3

6

9

6

6

9

6

27.75

1.58

40

0.9

13-

4

12

8

12

8

34.5

1.76

40

1.0

∑hy=2.93kPa

H2=1.3×∑hy=1.3×2.93=3.81KPa

H4=50KPa

即水箱安装高度满足

H≥H2+H4

4.1.8选泵

图4-2.23~6层给水管网水力计算用图

如图4-2.2所示,本设计的加压泵是为3~6层给水管网增压,但考虑市政给水事故停水,水箱仍应短期供下区用水,水泵用水量按最大时用水量9m3/h计。

由钢管水力计算表可查到。

当水泵出水管侧Q=2.5L/s时,选用DN50的钢管,v=1.18m/s,i=0.0696kPa/m。

水泵吸水管侧选用DN70的钢管,同样可查得,v=0.71m/s,i=0.019kPa/m。

 可知压水管长度28.55m,其沿程水头损失hy=0.069×28.55=24kPa。

吸水管长度1m,其沿程水头损失hy=0.019×1=0.019kPa。

故水泵的管路总水头损失为(2+0.019)×1.3=2.62kPa。

水箱最高水位与底层贮水池最低水位之差:

25.4-(-3)=28.4mH2O=284kPa。

取水箱进水浮球阀的流出水头为20kPa。

故水泵扬程Hp=284+2.62+20=306.62kPa。

水泵出水量如前所述为2.1m3/h。

 

据此选得水泵40MS×4~2.2型(H=296~392KPa,Q=5.4~10.8m3/h,N=2.2KW)2台,其中1台备用。

4.2消火栓给水系统计算

4.2.1消火栓的布置

该建筑总长32.9m,宽度14.9m,高度30m。

按《高层民用建筑设计防火规范》GB50045-95(2005版)第7.4.6.1条要求,消火栓的间距应保证同层任何部位有2个消火栓的水枪充实水柱同时到达。

式(4.7)

式(4.8)

式中S——消火栓间距,m;

R——消火栓保护半径,m;

C——水带展开时的弯曲折减系数,一般取0.8~0.9;

Ld——水带长度,m;

h——水枪充实水柱倾斜45°时的水平投影距离,m,h=0.71Hm,对一般建筑(层高为3~3.5m)由于两楼板间的限制,一般取h=3.0m;

Hm——水枪充实水柱长度,m;

b——消火栓栓的最大保护宽度,应为一个房间的长度加走廊宽度,m。

消火栓的水枪充实水柱应通过水力计算确定,且建筑物的不超过100m的高层建筑不应小于10m。

故Hm取为10m。

水带长度取25m,展开时的弯曲折减系数C取0.8,消火栓的保护半径应为:

R=C·Ld+h=0.8×25+3.1=23.11m

消火栓采用单排布置时,其间距为

=21.02m,取21m。

据此应在走道上布置3个消火栓(间距<21m)才能满足要求。

4.2.2水枪喷嘴处所需的水压

枪口所需压力按下式计算:

Hq=af·Hm/(1-∮·af·Hm)式(4.9)

式中——枪口所需压力,kPa;

——与水枪喷嘴口径有关的阻力系数;

——实验系数,见《建筑给水排水工程》(第五版)表3.2.4;

——水枪充实水柱长度,m。

查表,水枪喷口直径选19mm,水枪系数φ值为0.0097;充实水柱Hm要求不小于10m,选Hm=12m,水枪实验系数αf值为1.2。

水枪喷嘴处所需水压

Hq=af·Hm/(1-∮·af·Hm)

=1.2×12(1-0.0097×1.2×12)=16.9mH2O=169kPa

4.2.3水枪喷嘴的出流量

喷口直径19mm的水枪水流特性系数B为1.577。

=5.2L/s>5.0L/s

4.2.4水带阻力

水带水头损失按下式计算:

式(4.10)

式中——水带水头损失,kPa;

——水带长度,m;

——水带阻力系数。

19mm水枪配65mm水带,衬胶水带阻力较小,室内消火栓水带多为衬胶水带。

本工程亦选衬胶水带。

查表知65mm水带阻力系数Az值为0.00172。

水带阻力损失为:

=0.00712×25×5.22=4.813m

4.2.5消火栓口所需的水压

=16.9+4.813+2=21.913mH2O=219.13kPa

4.2.6校核

按《高层民用建筑设计防火规范》GB50045-95(2005版)第7.4.7.2条规定,可不设增压设施。

4.2.7水力计算

按照最不利点消防竖管和消火栓的流量分配要求,最不利消防竖管为x1,出水枪数为2支,相邻消防竖管即x2,出水枪数为2支。

Hxh0=Hq+hd+Hk=16.9+4.813+2=21.913mH2O=219.13kPa

Hxh1=Hxh0+ΔH(0和1点的消火栓间距)+h(0~1管段的水头损失)

=19.83+3.6+0.00804=25.6mH2O

1点的水枪射流量

式(4.11)

式(4.12)

qxh1===5.40L/s式(4.13)

图4-3室内消防给水管网水力计算用图

进行消火栓给水系统水力计算时,按下图以枝状管路计算,配管水力计算成果

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2