绝对温度与相对湿度.docx

上传人:b****0 文档编号:18409371 上传时间:2023-08-16 格式:DOCX 页数:29 大小:748.82KB
下载 相关 举报
绝对温度与相对湿度.docx_第1页
第1页 / 共29页
绝对温度与相对湿度.docx_第2页
第2页 / 共29页
绝对温度与相对湿度.docx_第3页
第3页 / 共29页
绝对温度与相对湿度.docx_第4页
第4页 / 共29页
绝对温度与相对湿度.docx_第5页
第5页 / 共29页
绝对温度与相对湿度.docx_第6页
第6页 / 共29页
绝对温度与相对湿度.docx_第7页
第7页 / 共29页
绝对温度与相对湿度.docx_第8页
第8页 / 共29页
绝对温度与相对湿度.docx_第9页
第9页 / 共29页
绝对温度与相对湿度.docx_第10页
第10页 / 共29页
绝对温度与相对湿度.docx_第11页
第11页 / 共29页
绝对温度与相对湿度.docx_第12页
第12页 / 共29页
绝对温度与相对湿度.docx_第13页
第13页 / 共29页
绝对温度与相对湿度.docx_第14页
第14页 / 共29页
绝对温度与相对湿度.docx_第15页
第15页 / 共29页
绝对温度与相对湿度.docx_第16页
第16页 / 共29页
绝对温度与相对湿度.docx_第17页
第17页 / 共29页
绝对温度与相对湿度.docx_第18页
第18页 / 共29页
绝对温度与相对湿度.docx_第19页
第19页 / 共29页
绝对温度与相对湿度.docx_第20页
第20页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

绝对温度与相对湿度.docx

《绝对温度与相对湿度.docx》由会员分享,可在线阅读,更多相关《绝对温度与相对湿度.docx(29页珍藏版)》请在冰点文库上搜索。

绝对温度与相对湿度.docx

绝对温度与相对湿度

温度与相对湿度、绝对湿度、饱和湿度的关系

作者:

不详来源:

网上收集更新日期:

2009-6-10阅读次数:

1042

四、相对湿度、露点温度转换的基本原理说明 

湿度研究对象是气体和水汽的混合物。

无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。

 

湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。

相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达:

 

压力为P,温度为T的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T和压力P下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。

 

实际水汽压与同一温度条件下的饱和水汽压的比值:

 

从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。

 

对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。

但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的。

 

在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。

 

基于上述解释,可以看出,只要测量得到了露点温度,通过温度to饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。

 

同样,只要测量了当前混合气体的正常温度,就可以通过温度to饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压;实际水汽压除以饱和水汽压,就可以得到相对湿度。

 

相对湿度换算为露点温度:

由于露点温度定义为空气中的水汽达到饱和时的温度,所以,必须先计算出实际水汽压。

根据露点的定义,这时的水汽压就是露点温度对应的饱和水气压。

因此,可以用对饱和水汽压求逆的方法计算露点温度。

 

 

绝对湿度 

(1)定义或解释 

①空气里所含水汽的压强,叫做空气的绝对湿度。

 

②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。

 

(2)单位 

绝对湿度的单位习惯用毫米水银柱高来表示。

也常用l立方米空气中所含水蒸汽的克数来表示。

 

(3)说明 

①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。

所以通常是用空气里水蒸汽的压强来表示湿度的。

 ②湿度是表示空气的干湿程度的物理量。

空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。

 

相对湿度 

(1)定义或解释 

①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。

 

②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。

 

(2)说明 

①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。

也是空气湿度的一种表示方式。

 

②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。

 

露点 

(1)定义或解释 

①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。

 

②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。

 

(2)单位 

习惯上,常用摄氏温度表示。

 

(3)说明 

①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。

例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg,12℃时的饱和蒸汽压为lO.52mmHg。

则此时:

空气的绝对湿度p=10.52mmHg, 

空气的相对湿度.B=(10.52/17.54)×100%=60%。

 

采用这种方法来确定空气的湿度,有着重大的实用价值。

但这里很关键的一点,要求学生学会露点的测定方法。

 

②露点的测定,在农业上意义很大。

由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。

如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。

知道了露点,可以预报是否发生霜冻,使农作物免受损害。

 

⑨气温和露点的差值愈小,表示空气愈接近饱和。

气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。

人体感到适中的相对湿度是60~70%。

 

④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。

 

由于未饱和汽的压强随温度的变化是遵循下列规律Pt=P0(1+t/273)。

 

在日常的温差下,压强的变化很小,所以近似地当作不变来处理。

如上例中在某一汽压下,空气气温是20℃,露点是12℃,那么从图中可见直线几乎和t轴平行。

 

绝热饱和温度 

空气的一个状态参数,绝热增湿过程中空气降温的极限。

当流动空气同循环水绝热接触时,只要空气的相对湿度小于100%,水就会不断汽化。

汽化需要吸收热量,使水温下降。

空气通过对流传热将热量传给循环水,所以气体温度也会下降。

当水经充分循环后,水温将维持恒定,由于它与空气充分接触,空气中水汽达到饱和,水和空气的温度也相同,空气与水之间在热量传递和质量传递两方面均达平衡。

此平衡系统的温度,称为绝热饱和温度。

 

若取此温度为计算焓的基准温度,空气的焓在上述平衡中保持不变,由空气传给水的热量仍由水汽带回。

绝热饱和温度的高低取决于空气的温度(常称干球温度)和湿度。

当相对湿度等于100%时,绝热饱和温度就等于干球温度。

相对湿度愈小,绝热饱和温度比干球温度降低得愈多。

 

对于空气和水系统,在数值上湿球温度与绝热饱和温度几乎相等,但两者的物理意义截然不同。

湿球温度是少量水同大量流动空气接触,使水达到热量平衡时的温度,但此时水分仍在汽化;空气达到绝热饱和温度时,则水与空气之间在传热和传质两方面均达到了平衡。

对于其他系统,如空气和有机液体,这两个温度并不相等

】:

农产品产后干燥加工环境普遍采用干湿球测湿法测量空气相对湿度.在温,湿度控制室内,对风速v,温度t,相对湿度U进行试验,结果指出:

v的下界为0.2m·s-1;当v2.5m·s-1后,按v=2.5m·s-1计算不影响测量精度;t40℃时,干湿球系数A几乎不受t的影响;在40℃t70℃范围内,A值大体上与t的2/3次方成正比;t80℃以后,A与t的关系变得复杂.提出了40℃t70℃范围内A的计算公式.经验证,在0.2v4m·s-1,40℃t70℃和30%U90%R.H范围内,使用此公式计算获得的相对湿度值,误差1.5%R.H.

【作者单位】:

云南农业大学计算机科学系云南农业大学农学与生物技术学院

【关键词】:

干湿球测湿法风速温度相对湿度计算方法

【基金】:

theNationalNaturalScienceFoundationofChina(40265001)YunnanProvincalScienceFoundation(2002C0038

本标准等效采用国际电工委员会标准IEC 870-2-1(第一版,1987)《远动设备及系统第二部分:

工作条件第一篇:

环境条件和电源》。

1 主题内容与适用范围

    本标准规定了远动设备及系统的工作条件,包括气候环境条件、机械环境条件和电源条件的类别与级别。

    本标准适用于远动设备及系统。

工业过程测量与控制设备亦可参照使用。

2 气候环境条件

2.1 空调场所(A级)

2.1.1 空调场所特征:

    空气温度和湿度可控制在规定限度内的场所。

2.1.2 空调场所的空气温度和湿度分级,见表1和图1。

表1空调场所空气温度和湿度分级

 

    注:

本标准中的特定级可根据实际情况由供需双方议定。

详见附录A之A2.2.5条。

        1)在此极限范围内,其温度偏差为规定值的±2℃。

        2)如设备中使用磁带,此值应为1.2℃/h。

 

图1空调场所湿度-温度关系图

 

2.2 加热和(或)冷却的封闭场所(B级)

2.2.1 加热和(或)冷却的封闭场所特征:

    该场所装有加热和(或)冷却设施,环境参数控制在规定的范围内。

控制可以是自动的或非自动的。

2.2.2 封闭场所的空气温度和湿度分级,见表2和图2。

表2封闭场所空气温度和湿度分级

 

    注:

在检修期间,当备件从比设备环境温度低的存贮地取出进行更换时,可能会产生暂时的凝露。

 

图2封闭场所湿度—温度关系图

 

2.3 遮蔽场所(C级)

2.3.1 遮蔽场所特征:

    空气温度和湿度均不受控制(不加热也不供冷);设备不直接暴露在日晒、雨淋、其他沉降物及强风压等各气候因素中;若有通风亦是自然方式;由于遮蔽体不一定是封闭的,在风的作用下,这些场所可能会受到少量雨水及沉降物的影响;其最低温度一般与户外气温相近,而最高温度可能会比户外气温高(太阳对遮蔽体的辐射作用);在某些情况下,湿度可能会达到凝露的程度。

2.3.2 遮蔽场所的空气温度和湿度分级,见表3和图3。

表3遮蔽场所空气温度和湿度分级

 

    采用说明:

C0是根据我国实际情况增添的级别。

主要参数值与GB4798.3《电工电子产品应用环境条件有气候防护场所固定使用》(=IEC721-3-3)之“3K5”相同。

 

图3遮蔽场所湿度—温度关系图

 

2.4 户外场所(D级)

2.4.1 户外场所特征:

    设备直接暴露在户外的大气条件下,经受包括日晒、风吹、雨淋、雹打、积雪和冰冻等气候条件的影响。

    在户外场所中,温度有可能会迅速地发生变化,尤其重要的是露天设备在光照区和阴影区之间的温度梯度。

2.4.2 户外场所的空气温度和湿度分级,见表4。

表4户外场所空气温度和湿度分级

 

    注:

1)上限温度表示设备表面温度,它是由空气温度(阴影处测得)加上阳光辐射效应所形成的。

        2)由于对含水量无技术限制,无法给出户外场所的湿度—温度关系图。

2.5 大气压力

    使用场所的大气压力分级见表5。

表5使用场所大气压力分级                  kPa

 

    注:

由于大气压力不是恒定值,不可能准确地指明其对应的海拔高度。

平均来说,大气压力108kPa (1080 mbar)对应于0m,86kPa(860 mbar)对应于1000m,66kPa 1000m,66kPa (660 mbar)对应于3000m。

3 机械环境条件

3.1 振动

   当地正弦振动环境的严酷程度可由以下相互联系的参数综合表示:

振动频率f,峰值加速度a,峰值位移(振幅)s。

振动的严酷程度也可用定动能原理表达,见附录B。

3.1.1 低频振动

3.1.1.1 频率范围从0.1Hz到150Hz。

它包括了设备安装环境和运输中出现的最常见的振动频谱。

3.1.1.2 低频振动严酷程度的表达方式为:

频率f<10Hz时,按定位移(振幅)线;频率f>10Hz时,按定加速度线。

3.1.1.3 低频频段内振动分级,见表6和图4。

表6低频振动分级

 

 

图4低频振动分级图

 

3.1.2 高频振动

3.1.2.1 频率范围从10Hz到10kHz。

3.1.2.2 高频振动严酷程度的表达方式为:

频率f<60Hz时,按定位移(振幅)线;频率f>60Hz时,按定加速度线。

3.1.2.3 高频频段内振动分级,见表7和图5。

表7高频振动分级

 

 

图5高频振动分级图

 

3.1.3 振动时间分级

    振动时间分级,是以规定时间内,振动出现的时间所占的百分比来划分。

振动时间的分级见表8。

表8振动时间分级                         %

 

3.2 机械冲击

    表达冲击现象一般有两种方法:

加速度与持续时间法;自由跌落法。

3.2.1 加速度与持续时间法

3.2.1.1 用与半个正弦波持续时间相对应的加速度或减速度值来表达机械冲击。

该方式主要用来表示设备在运输和工作期间出现的冲击现象,或在移动式应用中持续出现的冲击现象。

3.2.1.2 加速度a与持续时间t组合的推荐值见表9。

表9机械冲击的a-t组合的推荐值

 

 

3.2.1.3 设备运输

    典型运输条件下,冲击加速度和持续时间值,见表10。

表10冲击加速度值

 

3.2.2 自由跌落法

3.2.2.1 用自由跌落到指定平面的高度来表达机械冲击,通常用于表示设备在贮存时人力转运过程中及运输时装卸过程中所出现的冲击现象。

3.2.2.2 自由跌落分级

    自由跌落的严酷程度可用自由跌落高度与设备质量作为参数来表达,见表11。

该表还给出了与自由跌落分级对应的典型运输方式。

3.2.3 冲击重复率

    冲击可能以不同的时间周期出现,出现时间周期分级见表12。

表11自由跌落高度分级

 

表12冲击重复率分级

 

 

3.3 地震效应

    用麦氏地震烈度值来描述位于或接近于地质不稳定地区的地震效应。

为此应考虑该地区与已知地震活动源的距离。

    里氏和麦氏地震强度关系及其定量表示见附录C。

    对于安装远动设备的场所,其地震的当地效应,按麦氏烈度定为3级,见表13。

表13地震强烈程度分级

 

4 电源

4.1 概述

    本标准所考虑的是有关远动系统(或其部分)用的电源条件,校准和试验用的电源条件不属于本标准范围。

    系统运行所需的电能可由如下几种方式提供:

    ——直接接到电源上;

    ——连接到一个置于电源和系统(或其部分)之间的供电装置;

    ——在主电源维修或故障情况下,为维持系统(或其部分)的运行,由辅助或后备电源供电。

    本标准未对电源阻抗进行分级。

电源阻抗的影响,通过用不同负载情况下它对电压的影响来表示:

    ——最大电压是最小负载情况下的电压值;

    ——最小电压是满负载情况下的电压值。

4.2 交流电源

    本标准仅考虑与公共电网电源有相同特性的交流电,而不包括较高频率(如400Hz)的交流电。

    最常用的标称交流电压(50Hz或60Hz)见表14。

表14标称交流电压V

 

    注:

根据IEC第38号出版物,为推荐值。

4.2.1 电压容差

    有关远动设备电压容差见表15。

表15交流电压容差分级                     %

 

4.2.2 频率容差

    有关远动设备频率容差见表16。

表16频率容差分级                       %

 

4.2.3 谐波含量

    谐波含量定义为:

各次谐波电压平方和的平方根值对工频电压值的比值百分数。

    谐波含量分为两级,见表17。

表17谐波含量分级

 

    注:

交流电源中也可能出现来自公共电网的瞬变或音频电压,它是为了形成一个音频控制(或类似)系统而特意诱发的,这种信号的影响类似于谐波所产生的影响。

4.3 直流电源

    最常用的标称直流电压见表18。

表18标称直流电压V

 

    一些国家通常使用250/220V或125/110V厂站蓄电池组。

由于其不良的调节特性和其他设备引入的干扰,不建议在远动设备中应用这种高电压。

假使需要用这种高电压,则供需双方应对电压特性取得一致意见。

4.3.1 电压容差

    电压容差定为5级,见表19。

表19直流电压容差分级%

 

    注:

DCB级是用于连续充电电池组供电运行的设备。

4.3.2 接地方式

    表20规定了4种接地方式。

表20接地方式分类

 

    注:

①对于按哪一类接地为佳,此处不作推荐,但实际上一般是正接地。

        ②当应用浮空方式时,可能有高的静电电压产生并危及电子设备,应采用较高阻值的泄漏电阻(例如1MΩ)。

        ③为避免接地环路,宜采用单点接地。

4.3.3 电压纹波

    就本标准而言,纹波电压定义为:

在额定负载下,电源电压交流分量的峰—峰值对实测电源电压(平均)值的百分比。

    纹波电压应在远动设备所接的直流电源的输入端测量。

    电压纹波定为5级,见表21。

表21纹波分级                            %

 

4.3.4 偶然瞬变扰动

    设计的电源接口应对叠加在直流电源输入端的偶然瞬变扰动有抗冲击能力:

    ——最大值:

±20V;

    ——最大持续时间:

10ms;

    ——最大梯度:

100V/ms。

4.4 电源中断

    当电源电压跌落到低于特定设备规定的电压容差时,即发生电源中断。

中断时间定义为:

在设备停止运转之前,电压低于电压容差所持续的最长时间。

    超出本标准所规定的电源中断时间,则属于不间断电源(UPS)的范围。

    表22的分级对交流电源和直流电源都有效。

    当中断持续超过给定时间时,设备将正确地停止运转,并按商定的方式重新启动。

    表22给出设备容许中断时间的分级。

表22中断时间分级                     ms

 

4.5 耐压

4.5.1 概述

    远动设备可能遭受到施加于电力系统、也叠加于远动设备电源上的高压干扰。

    干扰性质可有两种:

    a.绝缘击穿电压(

    持续达1min的干扰,干扰电压基本上是电力系统基频(50Hz或60Hz)的正弦波。

这种状况下,绝缘击穿可危及人身和设备安全。

    b.直流冲击电压(尖峰电压)

    该电压涉及单个高压脉冲(任一极性),正如IEC出版物60-2的第10章所定义,其典型前沿上升时间为1.2μs和衰减时间为50μs。

    该脉冲可由邻近雷电放电感应产生,并可引起远动设备内电压敏感元件的永久性破坏。

    对大多数远动设备而言,这不是典型的高电压情况。

    注:

有关干扰电压等更多的信息将在IEC出版物870-2-2中规定。

4.5.2 耐压等级

    耐压等级分为4级,见表23。

表23耐压分级kV

 

    注:

设备的直流工作电压低于60V,按级别VW1和VW2;电源电压为60~250V,按VW2和VW3级。

 

附录A

标准使用说明

(补充件)

A1 概述

    远动系统用于对广大地区生产过程的监测和控制,将工作于范围很宽的环境条件之中。

 

    本标准所规定的环境条件,包括了远动设备及系统在运行中及设备安装完毕但尚未使用或贮存、装卸、运输期间所可能遇到的环境条件。

维护和修理条件不包括在内。

    本标准规定的环境条件不包括:

产品内部的微气候条件;生物和化学(包括微粒)环境及电磁环境条件;火灾、爆炸、核辐射、意外事故所造成的环境条件。

    本标准所考虑的因素,只限于对设备及系统的工作性能产生直接影响的参数,而不考虑在工作条件下,对操作人员的影响。

    本标准的环境条件分级,适用于在考虑了环境因素的影响后,设备仍能持久地保持其运行性能。

应注意,设备如长久工作在极限状态下,可能会缩短其寿命。

    本标准的目的是规定环境条件参数及严酷程度的标准化分级,以保证设备在各种可能条件下的最佳效能。

避免因忽视具体的工作条件而对系统或系统部件的性能造成影响,并避免对设备作不适当的运输与安装。

    本标准给出的气候环境条件,是以温度和湿度极限条件的适当组合为基础,并分别将其归入4种场所类型。

但温度和湿度范围不一定必须与场所类型相吻合。

例如,在无热源或冷却源的遮蔽场所,就可能存在B3级的气候条件。

    在运输和存贮期间的某些实际气候环境,可能会有与本标准的场所类型或各级别极限条件不符的情况,这可由供需双方协商而定。

    本标准为供需双方提供统一的设备环境条件分级,可用作设备的设计、防护和控制环境的基础,并为制订产品标准或技术要求及进行环境适应性试验提供依据。

A2 气候环境条件

A2.1 当地环境参数的确定

    对本标准来说,环境条件是指在设备正常应用中的当地环境条件。

其环境参数的测点应设在设备工作环境的邻近,测点应处在空气流通、不太受设备发热影响或太阳直接辐射及类似影响的地点。

A2.2 气候环境条件的选用

    气候环境场所分级汇总,见表A1。

A2.2.1 空调场所(A级)

    这种场所通常供过程控制计算机和其它需要控制空气环境的电子设备使用。

对控制起关键性作用的主控制室及任何有关设备机房,通常属于这个范畴。

A2.2.2 加热和(或)冷却的封闭场所(B级)

表A1场所分级汇总

 

    注:

各种场所对应的空气温度、相对湿度及绝对湿度的相互关系见图1、图2、图3。

    对操作和维修人员需在其中持续工作一段时间的工作室,建议采用B1级;B3和B4级适用于大多数远动设备。

但应注意,工作人员持续处在B3和B4级的极端温度下会感到不舒适。

A2.2.3 遮蔽场所(C级)

    典型的遮蔽场所是仪器、设备的工作栅,贮存用的不加热库房和运输用封闭车厢。

既无加热也无冷却设施的封闭场所,应作为遮蔽场所。

    可与设备分离的某些部件,如发射机终端控制单元、显示器等及某些维修备件,常常存放在遮蔽场所中。

不需要频繁操作的设备,如控制器、记录器和其他设备,也可置于遮蔽场所内。

A2.2.4 户外场所(D级)

    传感器、执行机构等以及用于测量气候和污染的特殊仪器,常常被安置于户外场所。

A2.2.5 特定级

    各种工作条件的严酷程度是用极限值,而不是用平均值的方法来表示。

考虑到在有些应用场所存在着极端的或特殊的工作环境,在这种情况下,其实际环境参数值可能会超过或小于这些规定的极限值,这时可由供需双方议定,归入如表中所列的AX、BX、CX、DX等的“特定”级。

对于特定级可给出多于一组的极限值。

A2.2.6 大气压力

    通常,大气压力随海拔高度而变化,随气候条件亦有些变化;某些场所可能需要

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2