EViews软件操作及练习题指令资料.docx

上传人:b****1 文档编号:1858082 上传时间:2023-05-01 格式:DOCX 页数:17 大小:136.51KB
下载 相关 举报
EViews软件操作及练习题指令资料.docx_第1页
第1页 / 共17页
EViews软件操作及练习题指令资料.docx_第2页
第2页 / 共17页
EViews软件操作及练习题指令资料.docx_第3页
第3页 / 共17页
EViews软件操作及练习题指令资料.docx_第4页
第4页 / 共17页
EViews软件操作及练习题指令资料.docx_第5页
第5页 / 共17页
EViews软件操作及练习题指令资料.docx_第6页
第6页 / 共17页
EViews软件操作及练习题指令资料.docx_第7页
第7页 / 共17页
EViews软件操作及练习题指令资料.docx_第8页
第8页 / 共17页
EViews软件操作及练习题指令资料.docx_第9页
第9页 / 共17页
EViews软件操作及练习题指令资料.docx_第10页
第10页 / 共17页
EViews软件操作及练习题指令资料.docx_第11页
第11页 / 共17页
EViews软件操作及练习题指令资料.docx_第12页
第12页 / 共17页
EViews软件操作及练习题指令资料.docx_第13页
第13页 / 共17页
EViews软件操作及练习题指令资料.docx_第14页
第14页 / 共17页
EViews软件操作及练习题指令资料.docx_第15页
第15页 / 共17页
EViews软件操作及练习题指令资料.docx_第16页
第16页 / 共17页
EViews软件操作及练习题指令资料.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

EViews软件操作及练习题指令资料.docx

《EViews软件操作及练习题指令资料.docx》由会员分享,可在线阅读,更多相关《EViews软件操作及练习题指令资料.docx(17页珍藏版)》请在冰点文库上搜索。

EViews软件操作及练习题指令资料.docx

EViews软件操作及练习题指令资料

EViews软件操作及练习题指令

一、建立工作文件

  打开EViews主窗口;从EViews主菜单中点击File键,选择New→Workfile,则打开一个Workfile Range选择框,其中需做三项选择:

①Workfile frequency;②Startdate;③Enddate。

根据数据的性质做①Workfile frequency;②Startdate;③Enddate各项选择。

  点击OK键。

这时会建立一个尚未命名的工作文件(Workfile:

UNTITLED)。

点击name键(起名,保存)。

二、关闭工作文件

从EViews主窗口右上方,点击×。

三、打开工作文件

双击EViews标识,从主窗口,点击File→open→Workfile→工作文件名(工作文件名字符不得超过16个)。

四、输入数据

从主窗口,点击Quick→EmptyGroup→用手工输入数据。

输入好数据后,对时间序列数据name(起名)→save(保存)。

也可从Ecxel中把数据粘贴到EmptyGroup,name→save。

注意:

如果输入数据错误,如何该?

从Eviews主菜单中点击Edit键。

五、用公式生成新序列

从主窗口,点击Quick→GenerateSeries→输入计算公式。

最常用运算符号:

加(+),减(-),乘(*),除(/),乘方(^),X的一阶差分(D(X),即X-X(-1)),对X取自然对数(log(X)),对X取自然对数后做一阶差分(Dlog(X)),

下面是@函数及其含义:

@SUM(X)——序列X的和

@MEAN(X)——序列X的均值

@VAR(X)——序列X的方差

@SUMSQ(X)——序列X的平方和

@COV(X,Y)——序列X和序列Y协方差

@COR(X,Y)——序列X和序列Y

@R2——R2统计量

@RBAR2——调整的R2统计量

@SE——回归函数的标准误差

@F——F统计量

@MOVAV(X,n)——序列X的n期移动平均,其中n为整数

六、改变工作文件区间

从主窗口,点击proc→structure/ResizeCurrentPage→改变区间。

七、把各序列放到一起

方法一:

从主窗口,点击Object→NewObject→Group→输入序列名→OK→name→save。

方法二:

从工作文件窗口,左键单击某一序列→按住电脑左下方Ctrl键不松→再依次左键单击另外序列→按鼠标右键→asGroup→name→save。

八、单序列(X)的直方图和描述统计量

左键双击打开序列(X)→View→Descriptivestatistic→Histogramandstats

九、多序列描述统计量

左键双击打开序列组(Group)→View→Descriptivestatistic→Commonstats

十、序列的折线图

左键双击打开序列(X)→Graph→line→OK

十一、序列Y和X的散点图

  从EViews主窗口,点击Quick键,选择Graph功能,这时将弹出一个对话框,要求输入图画所用的变量名。

对于画散点图来说,应该输入两个变量。

这里因为要画x,y的散点图,所以输入x,y。

点击OK键,会得到对话框,从Graph Type选项中选ScatterDiagram,然后按OK键,得到散点图。

如要改变x,y横纵轴的位置,改变x,y顺序即可。

十二、进行OLS回归(以双变量回归模型为例)

  从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入ycx或者y=c

(1)+c

(2)*x。

在Estimate Setting选择框中自动给出缺省选择LS估计法和样本区间。

点击OK键,即可得到回归结果。

然后name→save。

十三、预测

操作:

(1)打开工作文件(WorkFile),从主窗口→Procs→structure/ResizeCurrentPage→改变区间。

在打开的扩展范围选择框中分别输入预测区间。

(2)编辑变量X的数据(用鼠标右键激活),输入X的实际值。

(3)在回归模型估计结果显示窗口的命令行中,单击Forecast,打开预测窗口,预测结果变量的缺省选择为YF,选择静态预测,点击OK。

在工作文件窗口,就会显示YF。

(4)主窗口→Quick→Graph,打开作图对话框输入YFY,选择LineGraph,SingeScale。

十四、显示残差图

在回归模型估计结果显示窗口的命令行中,单击resids即可。

十五、自相关练习的操作指令(以双变量回归模型为例)

操作:

(1)用OLS方法估计模型的参数。

从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入ycx或者y=c

(1)+c

(2)*x。

在Estimate Setting选择框中自动给出缺省选择LS估计法和样本区间。

点击OK键,即可得到回归结果。

然后name→save。

(2)检验自相关

①图示法。

由OLS估计结果,得到残差resid,并把残差resid转换成E,即从主窗口→Quick→GenerateSeries→生成序列(E=resid)。

再从从主窗口→Quick→Graph,在图形对话框中键入EE(-1),再单击ScatterDiogram,得到散点图。

②DW检验。

由OLS估计结果,得到DW,给定显著性水平α,查DW统计表,n表示样本观测值的个数,k是解释变量的个数,得到DW统计量的下限临界值dl和du,再根据DW检验的判断法则,进行判断。

(3)自相关的修正

①根据DW统计量,利用公式

=1-DW/2,计算

②对Y序列作广义差分。

点击Quick→GenerateSeries→输入计算公式(DY=Y-

Y(-1))。

③对X序列作广义差分。

点击Quick→GenerateSeries→输入计算公式(DX=X-

X(-1))。

(4)再用OLS方法估计模型的参数。

从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入dycdx或者dy=c

(1)+c

(2)*dx。

在Estimate Setting选择框中自动给出缺省选择LS估计法和样本区间。

点击OK,即可得到回归结果。

然后name→save。

(5)再进行DW检验。

(6)消除了自相关的模型即为所求模型。

十六、异方差练习的操作指令(以双变量回归模型为例)

操作:

(1)用OLS方法估计模型的参数。

(2)异方差检验

①图示法。

从Equation→resid,得到残差图。

还可把resid变换为e,再作e与序列x的散点图。

②G-Q检验。

从主窗口→点击Procs→SortCurrentpage→yes,出现排序对话框后,键入x,选升序(ascending),单击OK。

假定样本数据为n,去掉中间c(n/4)个数据,然后分成两组数据,分别做两个回归,得到两个残差平方和。

构造F统计量,取显著性水平0.05,查F分布表,得到F临界值,如果F统计量大于F临界值,则存在异方差。

(3)异方差的修正。

用加权最小二乘法,具体操作:

在工作文件单击方程标识,打开回归方程,在方程窗口单击Estimate→Options→WeightedLS/TSLS→Weight(输入权数)→OK

(4)为了分析异方差的校正情况,利用WLS估计出模型以后,还需要利用怀特检验再次判断模型是否存在异方差性。

具体操作:

在方程窗口单击View→ResidualTest→WhiteHeteroskedasticity。

(5)取显著性水平0.05,查

,n为辅助方程解释变量的个数,如果nR2<

则修正后的方程不存在异方差。

十七、多重共线性练习的操作指令

操作:

(1)运用OLS法对方程估计参数。

从EViews主窗口,点击Quick→点击EstimateEquation功能。

(2)做F检验,由方程得到F统计量,在给定显著性水平0.05下,查F0.05(k,n-k-1),这里k为变量出个数,n为样本点数。

如果F0.05(k,n-k-1)

则表明从整体上看,被解释变量和解释变量之间线性关系显著。

(3)检验。

先计算被解释变量和解释变量之间的相关系数,EViews操作如下:

在主窗口→点击Quick→GroupStatistics→Correlation→SeriesLine(输入被解释变量和解释变量)→OK,判断解释变量之间的相关程度。

(4)多重共线性的修正(逐步回归法)。

运用OLS方法逐一求Y(被解释变量)对各个解释变量的回归,结合经济意义和统计检验选出拟合效果最好的双变量回归方程为基础,在此基础上,再添加其他解释变量,直到选出最佳的回归模型。

十八、有限分布滞后模型练习的操作指令

设定模型:

操作:

建立Workfile,从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入Ycxx(-1)x(-2)x(-3)x(-4)x(-5),点击OK。

或者在Equation Specification选择框中输入Ycx(0to-5)。

十九、多项式分布滞后模型的阿尔蒙估计法(AlmonmethodofPolynomizlDistributedLogModels)

(一)阿尔蒙估计法

(1)

设定模型:

注意:

这里k=6,r=2。

则原模型可变为:

其中:

EViews操作:

(1)建立Workfile,注意:

name→save。

(2)生成新变量,从主窗口点击Quick→GenerateSeries→输入计算公式(W0=x+x(-1)+x(-2)+x(-3)+x(-4)+x(-5)+x(-6);W1=x(-1)+2*x(-2)+3*x(-3)+4*x(-4)+5*x(-5)+6*x(-6);W2=x(-1)+4*x(-2)+9*x(-3)+16*x(-4)+25*x(-5)+36*x(-6))。

(3)用OLS法做Y对W0,W1,W2回归。

从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入ycW0W1W2。

点击OK。

可以得到

的估计值。

(4)利用

,计算:

(5)最后得到分布滞后模型的估计式。

(二)阿尔蒙估计法

(2)

操作:

(1)建立Workfile,注意:

name→save。

(2)运用EViews程序中阿尔蒙估计法,可以直接进行,从主窗口点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入ycPDL(x,k,r),(应输入命令:

ycPDL(x,6,2)),点击OK。

可以得到的估计值。

注意:

EViews程序中,PDL(x,k,r),PDL是PolynomizlDistributedLogModels的简写,x表示为自变量,k表示滞后期,r表示系数多项式的阶数,在这个例子中,应输入命令:

PDL(x,6,2)

(3)用“PDL”估计分布滞后模型时,EViews所采用的滞后多项式变换不是形如

,而是阿尔蒙多项式的派生形式:

,其中k为滞后期数,并且滞后期数为偶数。

在本例中取k=6,这样,系数多项式应是:

(j=0,1,2,3,4,5,6)

(4)利用

计算

(j=0,1,2,3,4,5,6)。

(5)最后得到分布滞后模型的估计式。

二十、用经验权数法估计有限分布滞后模型的参数

设定模型:

操作:

(1)建立Workfile。

注意:

name→save。

(2)运用检验加权法,选择下列三组权数分别表示递减滞后、A型滞后、不变滞后。

①1,1/2,1/4,1/8;②1/4,1/2,2/3,1/4;③1/4,1/4,1/4,1/4。

(3)生成新的三个序列

操作:

从主窗口,点击Quick→GenerateSeries→输入计算公式z1t=xt+1/2*xt-1+1/4*xt-2+1/8*xt-3;

z2t=1/4xt+1/2*xt-1+2/3*xt-2+1/4*xt-3

z3t=1/4xt+1/4*xt-1+1/4*xt-2+1/4*xt-3。

(4)回归分析。

从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入Ycz1t,用Z2t、Z3t替换z1t,重复前面回归过程,可得到另外两个经验加权模型的回归结果。

(5)对三个模型,要检验自相关、t检验和R2,从中选出最佳的分布滞后模型。

★注意:

有限分布滞后模型中滞后期数的判定:

Akaikeinfocriterion(赤池准则)和Schwarzcriterion(施瓦茨准则)最小。

二十一、随机自变量模型(RandomRegressorsModels)的参数估计(工具变量法)

若线性回归模型的假定cov(GDPu)=0不满足,即自变量x是随机解释变量,用OLS法估计量将失去无偏性和一致性,为此,必须对随机项是否与自变量强相关进行检验。

操作:

(1)建立Workfile。

注意:

name→save。

(2)进行豪斯曼(HausmanTest)检验。

检验GDP与u是否存在强相关(省略)。

假定GDP与u存在强相关,而储蓄变量与随机误差项u不相关(这里只是为了说明方法的应用,不去计较储蓄变量与随机误差项u实际上是否相关),可以作为自变量GDP的工具变量。

(3)在工作文件指令窗口输入下列命令:

EquationHausman.LsGDPCChuxu

GenrVhat=Resid

EquationEq01.LSChukouCGDPVhat

点击回车

注意:

第一句命令得到GDP关于它的工具变量Chuxu的回归方程(称作Hausman方程);第二句命令是建立一个变量Vhat等于Hausman方程的Resid;第三个命令得到出口(Chukou)关于GDP和Vhat的回归方程。

对残差的估计值进行t检验,得t=-4.686,在1%是显著水平下,残查的回归参数的显著的,因此,拒绝原假设,自变量GDP与随机误差项之间存在相关性。

(4)以储蓄(Chuxu)作为GDP的工具变量。

从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入ChukoucGDP,在Instrumentlist框内添入Chuxu,选择“TSLS”方法(TwoStageLeastSquares),点击OK。

二十二、虚拟变量模型

(1)练习的操作指令

初职年薪Y/千美元

教育(1=大学教育,0=非大学教育)

初职年薪Y/千美元

教育(1=大学教育,0=非大学教育)

21.2

1

18.5

0

17.5

0

21.7

1

17.0

0

18.0

0

20.5

1

19.0

0

21.0

1

22.0

1

只含一个定性变量的回归模型,在这个模型中,

=初职年薪

操作:

建立Workfile,从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入YcD1,点击OK。

二十三、虚拟变量模型

(2)练习的操作指令

年薪Y/千美元

教龄X2

性别1=男,0=女

23.0

1

1

19.5

1

0

24.0

2

1

21.0

2

0

25.0

3

1

22.0

3

0

26.5

4

1

23.1

4

0

25.0

5

0

28.0

5

1

29.5

6

1

26.0

6

0

27.5

7

0

31.5

7

1

29.0

8

0

包括一个定量变量,一个两分定性变量的回归模型

其中

=大学教师的年薪;

---------教龄

操作:

建立Workfile,name→save。

再从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入YcD1x,点击OK。

二十四、虚拟变量模型(3)练习的操作指令

测量斜率变动的模型,以乘法形式引入虚拟解释变量,是在所设定的计量模型中,将虚拟解释变量与其他解释变量相乘作为新的解释变量,以达到其调整模型斜率系数的目的。

这个模型等价于:

操作:

(1)建立Workfile,name→save。

(2)生成新变量,从主窗口点击Quick→GenerateSeries→输入计算公式(Z=XD1)

(3)做回归。

从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入YcxxD1,点击OK。

二十五、虚拟变量模型(4)练习的操作指令

测量斜率和截距都变动的模型,如果斜率和截距都变动,适合采用以下模型:

操作:

(1)建立Workfile,name→save。

(2)生成新变量,从主窗口点击Quick→GenerateSeries→输入计算公式(Z=XD1)

(3)做回归。

从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入YcxD1xD1,点击OK。

二十六、虚拟变量模型(5)练习的操作指令

分段线性回归,当在模型中使用虚拟变量时,回归函数就不再是连续的了。

那么,能否可以用虚拟变量描述出模型结构的变化,又使回归函数保持连续呢?

可以。

考虑模型:

其中

表示结构发生变化的t=b1时刻的

值。

当D1=0时,

当D1=1时,

操作:

建立Workfile,name→save。

(2)生成新变量,从主窗口点击Quick→GenerateSeries→输入计算公式(Z=(X-Xb)D1)

(3)做回归。

从EViews主窗口,点击Quick→点击EstimateEquation功能。

弹出一个对话框。

在Equation Specification选择框中输入Ycx(X-Xb)D1,点击OK。

二十七、联立方程模型的练习

其中:

——t期的消费额,

——t期的投资额,

——t期的国民收入

——t期的政府支出额,

——t-1期的国民收入

经过检验,消费方程是过度识别,适合用二阶段最小二乘法估计。

 

操作:

(1)第一步,作为解释变量的内生变量Y的简化方程为

(2)估计Y的简化式方程

(3)生成新序列:

EY=Y-Resid

(4)利用Y的拟合值

,在消费方程中用

代替Y,再次应用OLS法,估计替代后的结构方程即消费方程。

注意:

上述步骤可以直接使用二阶段最小二乘法估计命令,即在EstimateEquation对话筐中,键入CSCYCS(-1)@CY(-1)CS(-1)G,在估计方法方框中选择TSLS,点击OK。

(5)投资方程显然满足古典假设,可直接应用OLS法。

二十八、协整分析的练习

AugmentedDickey-FullerTest(ADF)检验

考虑模型

(1)△yt=δyt-1+∑λj△yt-j+μt

模型

(2)△yt=η+δyt-1+∑λj△yt-j+μt

模型(3)△yt=η+βt+δyt-1+∑λj△yt-j+μt

其中:

j=1,2,3

单位根的检验步骤如下:

第一步:

估计模型(3)。

在给定ADF临界值的显著水平下,如果参数δ显著不为零,则序列yt不存在单位根,说明序列yt是平稳的,结束检验。

否则,进行第二步。

第二步:

给定δ=0,在给定ADF临界值的显著水平下,如果参数β显著不为零,则进入第三步;否则表明模型不含时间趋势,进入第四步。

第三步:

用一般的t分布检验δ=0。

如果参数δ显著不为零,则序列yt不存在单位根,说明序列yt是平稳的,结束检验;否则,序列存在单位根,是非平稳序列,结束检验。

第四步:

估计模型

(2)。

在给定ADF临界值的显著水平下,如果参数δ显著不为零,则序列yt不存在单位根,说明序列yt是平稳的,结束检验;否则,继续下一步。

第五步:

给定δ=0,在给定ADF临界值的显著水平下,如果参数δ显著不为零,表明含有常数项,则进入第三步;否则继续下一步。

第六步:

估计模型

(1)。

在给定ADF临界值的显著水平下,如果参数δ显著不为零,则序列yt不存在单位根,说明序列yt是平稳的,结束检验。

否则,序列存在单位根,是非平稳序列,结束检验。

操作:

(1)检验消费序列是否为平稳序列。

在工作文件窗口,打开序列CS,在CS页面单击左上方的“Viem”键并选择“UnitRootTest”,依据检验目的确定要检验的模型类型,则有单位根检验结果。

消费时间序列为模型(3),其tδ值大于附表6(含有常数项和时间趋势)中0.01~0.10各种显著性水平下值。

因此,在这种情况下不能拒绝原假设,即私人消费时间序列CS有一个单位根,SC序列是非平稳序列。

(2)单整。

检验消费时间序列一阶差分(△SCt)的平稳性。

用OLS法做两个回归:

△2SCtC△SCt-1

△2SCtCt△SCt-1△2SCt为二阶差分,在两种情况下,tδ值都小于附表6中0.01~0.10各种显著性水平下的值。

因此,拒绝原假设,即私人消费一阶差分时间序列没有单位根,即私人消费一阶差分时间序列没有单位根,或者说该序列的平稳序列。

所以,SCt是非平稳序列,由于△SCt~I(0),因而SCt~I

(1)。

(3)判断两变量的协整关系。

第一步:

求出两变量的单整的阶

对于SCt。

做两个回归(SCtCSCt-1),(△2SCtC△SCt-1)。

对于yt,做两个回归(ytCyt-1),(△2ytC△yt-1)。

判断SCt和yt都是非平稳的,而△SCt和△yt是平稳的,即SCt~I

(1),yt~I

(1)。

第二步:

进行协整回归

用OLS法做回归:

(SCtCyt),并变换参差为et。

第三步:

检验et的平稳性

用OLS法做回归:

(△etCet-1)

第四步:

得出两变量是否协整的结论

因为t=-3.15与下表协整检验EG或AGE的临界值相比较(K=2),采用显著性水平a=0.05,tδ值大于临界值,因而接受et非平稳的原假设,意味着两变量不是协整关系。

可是,如果采用显著性水平a=0.10,则tδ值与临界值大致相当,因而可以预期,若a=0.11,则tδ值小于临界值,接受et平稳的备择假设,即两变量具有协整关系。

协整检验EG或AGE的临界值

样本个数

显著性水平

K=2

K=3

K=4

样本容量

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2