第8章-平面问题的复变函数解.doc

上传人:聆听****声音 文档编号:1885402 上传时间:2023-05-02 格式:DOC 页数:42 大小:864KB
下载 相关 举报
第8章-平面问题的复变函数解.doc_第1页
第1页 / 共42页
第8章-平面问题的复变函数解.doc_第2页
第2页 / 共42页
第8章-平面问题的复变函数解.doc_第3页
第3页 / 共42页
第8章-平面问题的复变函数解.doc_第4页
第4页 / 共42页
第8章-平面问题的复变函数解.doc_第5页
第5页 / 共42页
第8章-平面问题的复变函数解.doc_第6页
第6页 / 共42页
第8章-平面问题的复变函数解.doc_第7页
第7页 / 共42页
第8章-平面问题的复变函数解.doc_第8页
第8页 / 共42页
第8章-平面问题的复变函数解.doc_第9页
第9页 / 共42页
第8章-平面问题的复变函数解.doc_第10页
第10页 / 共42页
第8章-平面问题的复变函数解.doc_第11页
第11页 / 共42页
第8章-平面问题的复变函数解.doc_第12页
第12页 / 共42页
第8章-平面问题的复变函数解.doc_第13页
第13页 / 共42页
第8章-平面问题的复变函数解.doc_第14页
第14页 / 共42页
第8章-平面问题的复变函数解.doc_第15页
第15页 / 共42页
第8章-平面问题的复变函数解.doc_第16页
第16页 / 共42页
第8章-平面问题的复变函数解.doc_第17页
第17页 / 共42页
第8章-平面问题的复变函数解.doc_第18页
第18页 / 共42页
第8章-平面问题的复变函数解.doc_第19页
第19页 / 共42页
第8章-平面问题的复变函数解.doc_第20页
第20页 / 共42页
亲,该文档总共42页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

第8章-平面问题的复变函数解.doc

《第8章-平面问题的复变函数解.doc》由会员分享,可在线阅读,更多相关《第8章-平面问题的复变函数解.doc(42页珍藏版)》请在冰点文库上搜索。

第8章-平面问题的复变函数解.doc

第八章平面问题的复变函数解

知识点

双调和方程的复变函数表达形式

应力分量复变函数表达式

应力分量的单值条件

多连域的K-M函数

无穷远应力与K-M函数

位移分量的曲线坐标表达

保角变换公式与K-M函数

柯西积分确定K-M函数

孔口应力

裂纹前缘应力分布

双调和函数的复变函数形式

位移分量的复变函数表达形式

位移分量的单值条件

无限大多连域中K-M函数的一般形式

保角变换和曲线坐标

应力分量的曲线坐标表达式

利用孔口边界条件确定K-M函数

椭圆孔口的保角变换

裂纹—短轴为零的椭圆

切应力作用的裂纹前缘应力

一、内容介绍

通过直角坐标和极坐标系,可以求解一些弹性力学平面问题。

但是,这些方法只能用于某些边界比较特殊的平面问题,特别是对于多连域问题更显得无能为力。

本章介绍复变函数解法,实质仍然是在给定的边界条件下求解双调和方程的问题,但应用中成为在给定的边界条件下寻找两个解析函数K-M函数的问题。

求解分析步骤为:

1、分别将应力函数、应力分量、位移和边界条件等表示为复变函数形式,就是用K-M函数表示;

2、探讨无限大多连域中,K-M函数的表达形式,将其表示为级数形式;

3、利用保角变换将无限大多连域映射为单位圆,使得问题的边界条件简化;

4、将边界条件转化为柯西积分,求解级数系数,从而使得问题求解。

如果你还没有学习复变函数课程,请你学习附录2或者查阅有关参考资料。

二、重点

1、K-M函数与应力函数、应力分量、位移和边界条件等;2、无限大多连域的K-M函数形式;3、保角变换与曲线坐标;4、椭圆孔口与平面裂纹问题。

§8.1应力函数的复变函数表示

学习思路:

弹性力学应力解法的基本方程是双调和方程,问题求解的关键是建立满足边界条件的双调和函数。

对于复变函数解,重要的问题是将双调和函数表达为复变函数形式。

本节首先将双调和方程表示为复变函数形式;然后通过积分用解析函数表示双调和函数。

学习时应该注意:

应力函数为实函数,通过复变函数表达的双调和函数也是实函数,因此应力函数虚部等于零。

上述分析的结果是使得应力函数通过两个单值解析函数和y(z)表示。

和y(z)称为克罗索夫-穆斯赫利什维利函数,简称K-M函数;或者称为复位势函数。

学习要点:

1、双调和方程的复变函数表达形式;2、双调和函数的复变函数形式

1、双调和方程的复变函数表达形式

在弹性力学的复变函数求解中,应力函数用U(x,y)表示,有其它定义。

设应力函数U(x,y)为双调和函数,首先考虑变形协调方程的复变函数表达形式。

对于复变函数z=x+iy,取其共轭,则=x-iy。

因此z和均为x,y的函数。

复变函数z可以写作z=reij,其共轭=re-ij,因此z和又可以表示为坐标r和j的函数。

同理,x,y也可以表示为z和的函数,有

因此,应力函数也可以表示为复变函数z和的函数,有

注意到

应力函数U(x,y)对坐标x,y的导数也可以表示为对复变函数z和的求导运算,有

将上式的后两式相加,可以得到调和方程的复变函数表达形式

双调和方程的复变函数表达式为

2、双调和函数的复变函数形式

对于应力函数U(z)的复变函数表示。

将双调和方程的复变函数表达式

乘以2,并对作积分,可得

对再作一次积分,可得

对z作一次积分,可得

对z再作积分一次,可得

应力函数U(z)的复变函数表达式中,有四个待定函数。

注意到应力函数为实函数,因此公式右边的复变函数的虚部必须为零。

所以上述函数必须是两两共轭的,即

或者

因此应力函数可以用两个待定函数表示为

或者

上述公式称为古尔萨(Goursat)公式。

公式将双调和函数通过两个复变函数

和c(z)表达。

和c(z)称为克罗索夫-穆斯赫利什维利函数,简称K-M

函数,均为单值解析函数。

Re为表示复变函数实部的符号。

§8.2应力分量的复变函数表示

学习思路:

应力函数已经通过K-M函数表示,但是这还不够,为了下一步的工作,本节的工作是将应力分量表示为复变函数形式,即使用K-M函数表示应力分量。

这一工作的主要内容是写出K-M函数对直角坐标的偏导数,应该注意,本章应力分量表达式也是写作复变函数表达形式的。

本节引入复变函数

,和

这主要是简化公式的描述,并没有增加未知函数。

上述函数均称为K-M函数。

学习要点:

1、K-M函数对直角坐标导数的复变函数表示;2、应力分量表达式

1、K-M函数对直角坐标导数的复变函数表示

对于无体力的弹性力学问题。

如果选取的应力分量满足

则上述应力分量自然是满足平衡微分方程的。

这里的问题是选取的应力函数是复变函数形式表达的,而且是由K-M函数描述的。

因此,应力分量也必须通过K-M函数表达。

根据公式

将上述两式相加,可以得到

将上式分别对x和y求一阶导数,可得

其中

2、应力分量表达式

上述公式

的第一式减去第二式乘以i,可得

将公式的第一式加上第二式乘以i,可得

取其共轭,则

上述公式推导中,引入和。

公式是用单值解析函数和y(z)表示的应力分量,自然满足平衡微分方程和变形协调方程。

§8.3位移的复变函数表示

学习要点与思路:

本节工作是将位移分量表示为复变函数形式,通过K-M函数表达弹性体位移。

对于应力解法,如果应力函数满足变形协调方程,则单连域问题应力函数描述的变形已经是协调的。

一般的讲,不需要专门分析位移。

但是对于复变函数弹性力学解,处理的问题均为多连域问题,因此位移单值连续条件即使对于应力解法也是不可缺省的。

在位移的复变函数表达式推导中,首先将几何方程代入物理方程的前两式,得到位移偏导数的表达式,这是K-M函数对x,y坐标的偏导数。

积分确定位移表达式,并且根据物理方程的第三式,确定弹性体的刚体位移,写出K-M函数表达的位移复变函数表达形式。

学习要点:

1、K-M函数表达的位移偏导数表达式;2、积分确定位移分量;3、位移分量的复变函数表达形式

1、K-M函数表达的位移偏导数表达式

对于平面应力问题,根据物理方程和几何方程的前两式,可得

其中

设。

由于K-M函数为解析函数,其连续可导,应满足柯西-黎曼(Cauchy-Riemann)条件,即

由于

取其共轭

因此可得

将上式代入公式

可得

2、积分确定位移分量

将公式

分别对x和y积分,可得

根据几何方程的第三式和切应力表达式代入切变胡克定理,上式可以写作

将位移表达式代入上式,则

整理可得

根据柯西-黎曼条件,公式左边第一项为零,所以

因此,g(x)=wx+v0,f(x)=-wy+u0。

这一结果说明:

g(x)和f(y)表示刚体位移,因此对于变形分析,可以略去不计。

即公式可以表示为

3、位移分量的复变函数表达形式

将上述两式

相加,则可得K-M函数表示的位移分量。

整理可得

或者写作

上述分析表明,如果已知K-M函数和y(z)时,则平面应力状态下的位移分量也是确定的。

对于平面应变问题,只须将弹性模量和泊松比

做对应的替换则可。

§8.4边界条件的复变函数表示

学习思路:

边界条件应用是弹性力学分析的重要步骤,本节讨论应用K-M表示面力边界条件。

由于应力和位移分量都是复变函数表示的,为方便进一步的分析,面力边界条件也需要用K-M函数表达。

在直角坐标系中,边界条件是以函数形式表示的,对应于一点的边界条件。

而在复变函数解中,更多使用边界线段的表达形式,这是复变函数性质决定的。

用复变函数描述的面力边界条件有三个。

显然,这三个关系式不是独立的,仅有两个独立关系。

学习要点:

1、任意一点的面力边界条件复变函数表达;

2、边界线段AB的面力边界条件:

3、边界力矩与K-M函数的关系:

 

4、位移边界条件:

思考题:

1、根据上述面力边界条件说明:

对于单连域弹性体,K-M函数为单值解析函数,而对于多连域,K-M函数将不再是单值的。

(解答)

1、任意一点的面力边界条件复变函数表达

对于弹性力学平面问题,其面力边界条件为

将复变函数表示的应力分量表达式

代入上式,则

设AB为弹性体的任意一段边界,而s是从边界上一点A量取的弧长(边界的外法线n指向弧长的右边),如图所示

则由几何关系

将上式代入公式

可得

将上述面力矢量用复数形式表达为Fsx+iFsy,则

将公式

代入上式,可得

2、边界线段AB的面力边界条件

公式的左边表示边界面力矢量在微分线段ds上的主矢量。

将公式沿边界从定点A到动点B(设B点的坐标为z)积分,则可得边界面力矢量在弹性体边界线段AB上的主矢量

由于在K-M函数和y(z)中,增加或减少一个复常数并不影响应力值,因此可以适当的选取K-M函数,使上式的常数为零。

上述公式表示了边界面力矢量与K-M函数和y(z)之间的关系。

显然对于给定的面力矢量,公式的右边为边界点的确定的函数,即已知函数;而左边为坐标z从弹性体区域内部向区域的边界趋近时的复位势函数值。

3、边界力矩与K-M函数的关系

如果将边界线段AB的面力矢量对坐标原点取矩,并利用关系式

可以得到

对上式作分部积分,可得

注意到

回代可得

公式的左边在外力给定的条件下,为边界点的确定函数。

公式的右边为K-M函数由弹性体内部向边界趋近时的数值。

4、位移边界条件

下面再讨论位移边界条件,当边界位移给定时,设边界位移为

u=u,v=v

则根据位移边界条件,有

上式即为K-M函数表示的位移边界条件。

到此为止,求解弹性力学平面问题,由在给定的边界条件下求解双调和方程的问题,变换为在给定的边界条件下寻找解析函数和y(z)的问题。

思考题:

1、根据上述面力边界条件说明:

对于单连域弹性体,K-M函数为单值解析函数,而对于多连域,K-M函数将不再是单值的。

解答:

如讨论的物体为单连域,由于和均为单值解析函数。

因此,当A和B重合时,也就是说积分曲线闭合时,则

=0,这表明作用在物体边界上的边界面力,必组成一个平衡力系。

这一结论是必然的,要使问题有解,边界上的面力必须满足这个条件。

§8.5多连域中φf(z)和y(z)的一般表达式

学习思路:

本节的主要任务是确保描述应力和位移分量的K-M函数的单值性。

单连域中的单值解析函数和y(z)在多连域可能不再是单值的。

因此K-M函数和y(z)表示的应力和位移形式也可能不再单值。

要保证应力和位移分量的单值性,必须讨论K-M函数和y(z)在多连域中的可能形式。

   首先分别根据应力分量的单值条件,将K-M函数和y(z)分解为单值解析函数和可能的多值函数两部份,构造可能的K-M函数和y(z)的形式。

然后根据位移的单值条件和内边界面力边界条件确定待定的系数。

最后得到多连域中位移和应力分量单值连续的K-M函数形式。

学习要点

1、单连域中的单值解析函数和y(z)在多连域中可能是多值的;

2、应力分量的单值条件;3、位移分量的单值条件;

4、多连域中位移和应力分量单值连续的K-M函数形式:

1、单连域中的单值解析函数和y(z)在多连域中可能是多值的

对于弹性力学的应力解法,若K-M函数和y(z)满足公式,即

则应力分量已经满足平衡微分方程,变形协调方程,对于单连域问题,

和y(z)均为单值解析函数。

根据边界条件,问题就可以求解。

但是对于多连域问题中,K-M函数和y(z)可能表现为多值函数,尽管它们在单连域中是单值连续的解析函数。

对于多连域弹性体S,具有m个内边界和一个外边界,而分别为内边界中的点,如图所示

那么如何选择这些K-M函数,才能保证应力分量和位移分量的单值连续条件呢。

这里的原则是保证应力和位移分量的单值性,分别根据应力分量的单值条件,构造可能的K-M函数和y(z)的形式,然后根据位移的单值条件和面力边界条件确定待定的系数。

2、应力分量的单值条件

由于应力分量必须是单值的,而应力分量与K-M函数的关系,有

所以的实部,即Re必须是单值的。

假如函数环绕多连域内部任意一个内边界lk绕行一周时,如果多值,只能是虚部多值。

根据应力表达式

其多值部分只能是一个虚常数增量。

为方便进一步分析,令此虚数增量为2piAk,其中Ak为实常数。

根据复变函数性质,若复变函数绕lk一周,如果有增量,其只能是对数函数产生的。

因此设由两部分组成,一部分是在S内单值解析的;另一部分是Akln(z-zk),则其绕lk一周有增量2piAk。

当绕lk一周时,除了Akln(z-zk)以外,其余各项均恢复原值。

其中zk为lk内任一点,即其在域S之外。

对上式积分可得

应该注意的是,在多连域内是单值连续的,但是其积分却不一定是单值连续的。

设其有增量2piCk,则

将上式代入复位势函数表达式,可得

上式中,Ak为实常数,而gk为复常数。

即在多连域内,为一个单值解析函数再加上前面两项。

对于应力分量表达式

由于,而zk在域S之外,域内为单值解

析函数。

因此y'(z)也必须为单值解析函数。

但是y(z)不一定是单值解析函数,作分析同前,有

其中为单值解析函数,gk'为任意复常数。

由此,对于多连域,K-M函数

和y(z)的确定出现了三个待定常数Ak,gk和gk'。

其值必须由位移单值条件和面力边界条件确定。

3、位移分量的单值条件

对于平面应力问题,位移分量为

当z绕lk一周时,则上式成为

因此,位移单值条件要求

通过位移单值条件,只有一个复常数还不能确定。

4、多连域中位移和应力分量单值连续的K-M函数形式

位移单值条件没能确定的另一个复常数条件将根据面力边界条件确定。

对于内边界lk,设边界面力的主矢量为

将公式

代入上式,则

联立求解,可得

将上述待定常数回代公式

上述公式为多连域内保证位移和应力单值连续条件的和y(z)的表达式,其中和为多连域区域内的单值解析函数。

§8.6无限大多连域中jf(z)和y(z)的表达式

学习思路:

尽管K-M函数的基本形式已经确定,但是对于一般的弹性力学问题,仍然难以确定函数的具体形式。

本节讨论无限大多连域的K-M函数表达形式。

利用无穷远边界条件,简化对数函数形式,并且在内边界之外将K-M函数的解析函数部分展开成劳伦级数。

并且利用应力有界条件和无穷远应力确定部分级数系数,为进一步工作奠定基础。

学习要点:

1、无限大多连域中K-M函数的一般形式;

2、利用应力分量有界简化K-M函数;

3、无穷远应力与K-M函数

1、无限大多连域中K-M函数的一般形式

对于无限大多连域,其外边界趋于无限远。

因此可以借助其无穷远处的边界条件,写出K-M函数的表达形式。

以坐标原点为圆心,作半径为R的圆,将所有的内边界均包围在此圆之内部。

那么对于之外的任意点都有|z|>||,因此

因此,公式

可以表示为

其中为所有m个内边界上的表面力在x和y方向的分量的代数和,而和y**(z)为以外区域内除了无穷远点的解析函数。

在无穷远处,和y**(z)可能为解析函数,也可能是非解析的。

它们在以外区域内可以展开成劳伦级数

2、利用应力分量有界简化K-M函数

将K-M函数的表达式

代入应力分量表达式

上式右边部分项将随|z|的增加而趋于无限大,因此当r趋于无穷远时,为使应力分量不至于成为无穷大,必须有

同理,如果应力表达式的应力分量有界,则在无穷远处有界,所以

于是,为了使应力分量在无穷远处保持有界,则K-M函数的形式为

公式中

上式中和y0(z)在以外区域,包括无穷远处均为解析函数。

由公式

可知,如果令,将不会改变应力分量,因此

其中

3、无穷远应力与K-M函数

上述公式

中的常数B和B'+iC'在无穷远处具有力学意义,说明如下。

因为,当。

所以在无穷远处,由公式

设s1,s2为弹性体无穷远处的主应力,如图所示

而a为s1与x轴的夹角,则

由此可得

所以

可见常数B与无穷远处的两个主应力之和成正比,而常数B'+iC'与无穷远处的两个主应力之差成正比

§8.7保角变换和曲线坐标

学习思路:

弹性力学问题的求解有赖于边界条件的简化。

对于复杂的边界形状,如果利用空间的变换,将是简化问题求解的最好途径。

保角变换就是充分发挥复变函数的特长,将孔口问题映射到x平面的单位圆。

这一节将介绍保角变换和曲线坐标的概念。

由于应用保角变换,矢量-位移,张量-应力公式以及K-M函数等均必须做出曲线坐标描述。

保角变换使得问题的公式复杂,但是边界条件的简化,以及柯西积分的应用将简化问题的分析。

在本节学习之前,请你先学习附录2,(有关保角变换的知识)

学习要点:

1、保角变换和曲线坐标;2、矢量的保角变换;3、位移分量的曲线坐标表达式;4、应力分量的曲线坐标表达式。

1、保角变换和曲线坐标

为了便于根据边界条件确定K-M函数,采取保角变换

z=w(x) 

将物体在z平面上所占的区域变为在x平面所占的区域。

一般的说,通过保角变换可以将非圆边界映射为圆边界,使得问题得以简化。

假设将z平面上的有限区域或者无限区域S映射为x平面的单位圆内的区域S,并且将z平面上的区域S的边界l映射为单位圆g,对应的关系如下表:

x平面

z平面

x=0(无穷远点)

z=0(原点)

r=const(圆)

r=const(曲线)

j=const(半射线)

j=const(曲线)

域S

域S

dx

dz

由于x平面上的任一点可以表示为,。

r和j是点x的极坐标。

而根据保角变换公式z=w(x),则z平面任意一点也可以通过r和j表示。

因此,r和j又称为曲线坐标。

对于某些问题的描述中,采用曲线坐标形式表示位移和应力有利于问题的分析。

曲线坐标的概念:

x平面的一个圆周r=const和一条径向直线j=const分别对应于z平面的两条曲线,这两条曲线就记作r=const和j=const。

于是r和j可以看作z平面上一点的曲线坐标。

由于变换的保角性,这个曲线坐标总是正交的,而且坐标轴r和j的相对位置和坐标轴Ox和Oy的相对位置相同,如图所示

2、矢量的保角变换

首先讨论矢量的保角变换。

设曲线坐标r,即j=const与x轴夹a角,如果A为z平面上的任一矢量,设A与曲线坐标r夹b角。

设Ax,Ay分别表示矢量A在x,y轴的投影;Ar,Aj表示在r=const和j=const上的投影,则

上式的几何意义为,将矢量A绕z点顺时针方向转动a角后,其在Oxy坐标系的位置,相当于A在曲线坐标系(r,j)中的位置,如图所示

如果用ur,uj分别表示曲线坐标下的位移矢量分量,则

根据保角变换,有

所以

沿曲线(r)取微分线段dz,则在x平面对应的有dx,由于

所以,取其共轭可得

将上式回代到公式

可得

3、位移分量的曲线坐标表达式

下面通过保角变换对弹性力学的公式作对应的转换。

首先,设K-M函数

和y(z)分别使用和y1(z)代替,同时令

根据位移表达式

在z平面上,将位移矢量向曲线坐标r和j投影。

由公式

可得

上式两边同时乘以2G,可得

上式是x平面上的曲线坐标系表达的位移表达式。

4、应力分量的曲线坐标表达式

下面建立曲线坐标中应力分量的复变函数表达式。

如果用sr,sj,trj表示物体在曲线坐标中的应力分量。

因为

而由公式

所以

上式为经过保角变换后,z平面上的曲线坐标系中的应力分量的复变函数表达式。

§8.8无限大薄板的孔口问题

学习思路:

本节的主要任务是将保角变换用于无限大薄板的孔口问题,确定K-M函数的基本求解公式。

推导中首先确定无限大板孔口问题的保角变换公式,将K-M函数转换为曲线坐标形式。

采用的方法仍然是将K-M函数分解为以级数表达的解析函数和对数表达的多值函数两部份。

对于K-M函数的级数形式,通过孔口面力边界条件可以确定级数函数的求解方程。

这个求解过程,利用保角变换后孔口边界的特殊性质,使用柯西积分使得计算简化。

学习要点:

1、保角变换公式与K-M函数;2、利用孔口边界条件确定K-M函数求解公式;3、柯西积分确定K-M函数的级数形式。

1、保角变换公式与K-M函数

保角变换的目标是:

将z平面上的孔口边界l映射为x平面上的单位圆g,将l以外的无限区域S映射为x平面上的单位圆内的有限区域S,将z平面上的无穷远点映射为x平面的坐标原点,如图所示

保角变换公式:

是将l以外的无限区域映射为单位圆g内(|x|<1=的普遍变换式,公式中R为实数,Ck为复数,而且<1。

保角变换公式确定以后,可以确定K-M函数和y(x),即将K

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2