卷积神经网络机器学习外文文献翻译中英文2020.docx

上传人:wj 文档编号:1950071 上传时间:2023-05-02 格式:DOCX 页数:16 大小:17.66KB
下载 相关 举报
卷积神经网络机器学习外文文献翻译中英文2020.docx_第1页
第1页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第2页
第2页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第3页
第3页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第4页
第4页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第5页
第5页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第6页
第6页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第7页
第7页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第8页
第8页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第9页
第9页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第10页
第10页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第11页
第11页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第12页
第12页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第13页
第13页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第14页
第14页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第15页
第15页 / 共16页
卷积神经网络机器学习外文文献翻译中英文2020.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

卷积神经网络机器学习外文文献翻译中英文2020.docx

《卷积神经网络机器学习外文文献翻译中英文2020.docx》由会员分享,可在线阅读,更多相关《卷积神经网络机器学习外文文献翻译中英文2020.docx(16页珍藏版)》请在冰点文库上搜索。

卷积神经网络机器学习外文文献翻译中英文2020.docx

卷积神经网络机器学习相关外文翻译中英文2020

英文

Predictionofcompositemicrostructurestress-straincurvesusing

convolutionalneuralnetworks

CharlesYang,YoungsooKim,SeunghwaRyu,GraceGuAbstract

Stress-straincurvesareanimportantrepresentationofamaterial'smechanicalproperties,fromwhichimportantpropertiessuchaselasticmodulus,strength,andtoughness,aredefined.However,generatingstress-straincurvesfromnumericalmethodssuchasfiniteelementmethod(FEM)iscomputationallyintensive,especiallywhenconsideringtheentirefailurepathforamaterial.Asaresult,itisdifficulttoperformhighthroughputcomputationaldesignofmaterialswithlargedesignspaces,especiallywhenconsideringmechanicalresponsesbeyondtheelasticlimit.Inthiswork,acombinationofprincipalcomponentanalysis(PCA)andconvolutionalneuralnetworks(CNN)areusedtopredicttheentirestress-strainbehaviorofbinarycompositesevaluatedovertheentirefailurepath,motivatedbythesignificantlyfasterinferencespeedofempiricalmodels.WeshowthatPCAtransformsthestress-straincurvesintoaneffectivelatentspacebyvisualizingtheeigenbasisofPCA.Despitehavingadatasetofonly10-27%ofpossiblemicrostructureconfigurations,themeanabsoluteerrorofthepredictionis<10%oftherangeofvaluesinthedataset,whenmeasuringmodelperformancebasedonderivedmaterialdescriptors,suchasmodulus,strength,andtoughness.Ourstudydemonstratesthepotentialtousemachinelearningtoacceleratematerialdesign,characterization,andoptimization.

Keywords:

Machinelearning,Convolutionalneuralnetworks,Mechanicalproperties,Microstructure,Computationalmechanics

Introduction

Understandingtherelationshipbetweenstructureandpropertyformaterialsisaseminalprobleminmaterialscience,withsignificantapplicationsfordesigningnext-generationmaterials.Aprimarymotivatingexampleisdesigningcompositemicrostructuresforload-bearingapplications,ascompositesofferadvantageouslyhighspecificstrengthandspecifictoughness.Recentadvancementsinadditivemanufacturinghavefacilitatedthefabricationofcomplexcompositestructures,andasaresult,avarietyofcomplexdesignshavebeenfabricatedandtestedvia3D-printingmethods.Whilemoreadvancedmanufacturingtechniquesareopeningupunprecedentedopportunitiesforadvancedmaterialsandnovelfunctionalities,identifyingmicrostructureswithdesirablepropertiesisadifficultoptimizationproblem.

Onemethodofidentifyingoptimalcompositedesignsisbyconstructinganalyticaltheories.Forconventionalparticulate/fiber-reinforcedcomposites,avarietyofhomogenizationtheorieshavebeendevelopedtopredictthemechanicalpropertiesofcompositesasafunctionofvolumefraction,aspectratio,andorientationdistributionofreinforcements.Becausemanynaturalcomposites,synthesizedviaseif-assemblyprocesses,haverelativelyperiodicandregularstructures,theirmechanicalpropertiescanbepredictediftheloadtransfermechanismofarepresentativeunitcellandtheroleoftheself-similarhierarchicalstructureareunderstood.However,theapplicabilityofanalyticaltheoriesislimitedinquantitativelypredictingcompositepropertiesbeyondtheelasticlimitinthepresenceofdefects,becausesuchtheoriesrelyontheconceptofrepresentativevolumeelement(RVE),astatisticalrepresentationofmaterialproperties,whereasthestrengthandfailureisdeterminedbytheweakestdefectintheentiresampledomain.Numericalmodelingbasedonfiniteelementmethods(FEM)cancomplementanalyticalmethodsforpredictinginelasticpropertiessuchasstrengthandtoughnessmodulus(referredtoastoughness,hereafter)whichcanonlybeobtainedfromfullstress-straincurves.

However,numericalschemescapableofmodelingtheinitiationandpropagationofthecurvilinearcracks,suchasthecrackphasefieldmodel,arecomputationallyexpensiveandtime-consumingbeeauseaveryfinemeshisrequiredtoaccommodatehighlyconcentratedstressfieldnearcracktipandtherapidvariationofdamageparameterneardiffusivecracksurface.Meanwhile,analyticalmodelsrequiresignificanthumaneffortanddomainexpertiseandfailtogeneralizetosimilardomainproblems.Inordertoidentifyhigh-performingcompositesinthemidstoflargedesignspaceswithinrealistictime-frames,weneedmodelsthatcanrapidlydescribethemechanicalpropertiesofcomplexsystemsandbegeneralizedeasilytoanalogoussystems.Machinelearningoffersthebenefitofextremelyfastinferencetimesandrequiresonlytrainingdatatolearnrelationshipsbetweeninputsandoutputse.g.,compositemicrostructuresandtheirmechanicalproperties.Machinelearninghasalreadybeenappliedtospeeduptheoptimizationofseveraldifferentphysicalsystems,includinggraphenekirigamicuts,fine-tuningspinqubitparameters,andprobemicroscopytuning.Suchmodelsdonotrequiresignificanthumaninterventionorknowledge,learnrelationshipsefficientlyrelativetotheinputdesignspace,andcanbegeneralizedtodifferentsystems.

Inthispaper,weutilizeacombinationofprincipalcomponentanalysis(PCA)andconvolutionalneuralnetworks(CNN)topredicttheentirestress-straincurveofcompositefailuresbeyondtheelasticlimit.Stress-straincurvesarechosenasthemodel'stargetbecausetheyaredifficulttopredictgiventheirhighdimensionality.Inaddition,stress-straincurvesareusedtoderiveimportantmaterialdescriptorssuchasmodulus,strength,andtoughness.Inthissense,predietingstress-straincurvesisamoregeneraldescriptionofcompositespropertiesthananycombinationofscalermaterialdescriptors.Adatasetof100,000differentcompositemicrostructuresandtheircorrespondingstress-straincurvesareusedtotrainandevaluatemodelperformance.Duetothehighdimensionalityofthestress-straindataset,severaldimensionalityreductionmethodsareused,includingPCA,featuringablendofdomainunderstandingandtraditionalmachinelearning,tosimplifytheproblemwithoutlossofgeneralityforthemodel.

Wewillfirstdescribeourmodelingmethodologyandtheparametersofourfinite-elementmethod(FEM)usedtogeneratedata.VisualizationsofthelearnedPCAlatentspacearethenpresented,alongwithmodelperformanceresults.

CNNimplementationandtraining

Aconvolutionalneuralnetworkwastrainedtopredictthislowerdimensionalrepresentationofthestressvector.TheinputtotheCNNwasabinarymatrixrepresentingthecompositedesign,with0'scorrespondingtosoftblocksandl'scorrespondingtostiffblocks.PCAwasimplementedwiththeopen-sourcePythonpackagescikit-learn,usingthedefaulthyperparameters.CNNwasimplementedusingKeraswithaTensorFlowbackend.Thebatchsizeforallexperimentswassetto16andthenumberofepochsto30;theAdamoptimizerwasusedtoupdatetheCNNweightsduringbackpropagation.

Atrain/testsplitratioof95:

5isused—wejustifyusingasmallerratiothanthestandard80:

20becauseofarelativelylargedataset.Witharatioof95:

5andadatasetwith100,000instances,thetestsetsizestillhasenoughdatapoints,roughlyseveralthousands,foritsresultstogeneralize.EachcolumnofthetargetPCA-representationwasnormalizedtohaveameanof0andastandarddeviationof1topreventinstabletraining.

Finiteelementmethoddatageneration

FEMwasusedtogeneratetrainingdatafortheCNNmodel.Althoughinitiallyobtainedtrainingdataiscompute-intensive,ittakesmuchlesstimetotraintheCNNmodelandevenlesstimetomakehigh-throughputinferencesoverthousandsofnew,randomlygeneratedcomposites.Thecrackphasefieldsolverwasbasedonthehybridformulationforthequasi-staticfractureofelasticsolidsandimplementedinthecommercialFEMsoftwareABAQUSwithauser-elementsubroutine(UEL).

VisualizingPCA

InordertobetterunderstandtherolePCAplaysineffectivelycapturingtheinformationcontainedinstress-straincurves,theprincipalcomponentrepresentationofstress-straincurvesisplottedin3dimensions.Specifically,wetakethefirstthreeprincipalcomponents,whichhaveacumulativeexplainedvariance-85%,andplotstress-straincurvesinthatbasisandprovideseveraldifferentanglesfromwhichtoviewthe3Dplot.Eachpointrepresentsastress-straincurveinthePCAlatentspaceandiscoloredbasedontheassociatedmodulusvalue,itseemsthatthePCAisabletospreadoutthecurvesinthelatentspacebasedonmodulusvalues,whichsuggeststhatthisisausefullatentspaceforCNNtomakepredictionsin.

CNNmodeldesignandperformance

OurCNNwasafullyconvolutionalneuralnetworki.e.theonlydenselayerwastheoutputlayer.Allconvolutionlayersused16filterswithastrideof1,withaLeakyReLUactivationfollowedbyBatchNormalization.Thefirst3Convblocksdidnothave2DMaxPooling,followedby9convblockswhichdidhavea2DMaxPoolinglayer,placedaftertheBatchNormalizationlayer.AGlobalAveragePoolingwasusedtoreducethedimensionalityoftheoutputtensorfromthesequentialconvolutionblocksandthefinaloutputlayerwasaDenselayerwith15nodes,whereeachnodecorrespondedtoaprincipalcomponent.Intotal,ourmodelhad26,319trainable

weights.

Ourarchitecturewasmotivatedbytherecentdevelopmentandconvergenceontofully-convolutionalarchitecturesfortraditionalcomputervisionapplications,whereconvolutionsareempiricallyobservedtobemoreefficientandstableforlearningasopposedtodenselayers.Inaddition,inourpreviouswork,wehadshownthatCNN'swereacapablearchitecturefor

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2