Design and fabrication of a new vibrationbased electromechanical power generator.docx

上传人:b****1 文档编号:1990863 上传时间:2023-05-02 格式:DOCX 页数:21 大小:233.47KB
下载 相关 举报
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第1页
第1页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第2页
第2页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第3页
第3页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第4页
第4页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第5页
第5页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第6页
第6页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第7页
第7页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第8页
第8页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第9页
第9页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第10页
第10页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第11页
第11页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第12页
第12页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第13页
第13页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第14页
第14页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第15页
第15页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第16页
第16页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第17页
第17页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第18页
第18页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第19页
第19页 / 共21页
Design and fabrication of a new vibrationbased electromechanical power generator.docx_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

Design and fabrication of a new vibrationbased electromechanical power generator.docx

《Design and fabrication of a new vibrationbased electromechanical power generator.docx》由会员分享,可在线阅读,更多相关《Design and fabrication of a new vibrationbased electromechanical power generator.docx(21页珍藏版)》请在冰点文库上搜索。

Design and fabrication of a new vibrationbased electromechanical power generator.docx

Designandfabricationofanewvibrationbasedelectromechanicalpowergenerator

Designandfabricationofanewvibration-based

electromechanicalpowergenerator

M.El-hami1,P.Glynne-Jones1,N.M.White1,M.Hill2,S.Beeby1,

E.James1,A.D.Brown1,J.N.Ross1

1DepartmentofElectronicsandComputerScience,2SchoolofEngineeringSciences

UniversityofSouthampton,

Highfield,SouthamptonSO171BJ,UK.

ABSTRACT

Adeviceisdescribedforgeneratingelectricalpowerfrommechanicalenergyinavibratingenvironment.Thedesignutilisesanelectromagnetictransduceranditsoperatingprincipleisbasedontherelativemovementofamagnetpolewithrespecttoacoil.Theapproachissuitableforembeddedremotemicrosystemsstructureswithnophysicallinkstotheoutsideworld.Simulation,modellingandtestresultsfollowingfabricationofafirstprototypehavedemonstratedthatgenerationofpracticalamountsofpowerwithinareasonablespaceispossible.Powergenerationofmorethan1mWwithinavolumeof240mm3atavibrationfrequencyof320Hzhasbeenobtained.

Keywords:

Self-powered,renewablepowergeneration,Vibration.

1INTRODUCTION

Overrecentyears,aninteresthasdevelopedinmicroelectromechanicalsystems(MEMS)andthesubjecthasmaturedtothepointwhereitsapplicationstoawiderangeofareasarenowclearlyfeasible.Applicationssuchasmedicalimplantsandembeddedsensorsinbuildingsandsimilarstructures,arejustafewofmanyexamples.Thesupplyofpowertosuchsystemshassofarbeenthroughbatteries.However,inlong-livedsystemswherebatteryreplacementisdifficultandinapplicationsconsistingofcompletelyembeddedstructureswithnophysicallinkstotheoutsideworld,generatingpowerfromambientsourcesbecomesimperative.Systemsthatdependonbatterieshavealimitedoperatinglife,whilesystemshavingtheirownself-poweredsupplyunithaveapotentiallymuchlongerlife.Apotentialandpromisingalternativesolutiontobatteriesistheuseofminiaturerenewablepowersupplyunits.Suchdevicesconvertenergyfromexistingsourcesenergywithintheirenvironmentintoelectricalenergy.

Ambientenergymaybeavailablewithintheenvironmentofasystemandisnotstoredexplicitly.Thesourceofsuchenergies,however,dependsontheapplication.Themostfamiliarambientenergysourceissolarpower(lightenergyfromambientlightsuchassunlight).Thermalenergyisanotherambientenergysource(thermoelectricgeneratorsgenerateelectricitywhenplacedacrossatemperaturegradient)[1].Flowofliquidsorgases,energyproducedbythehumanbody[2]andtheactionofgravitationalfields[3]areotherambientenergysourcepossibilities.OtherexampleswhichdependoninjectedenergyratherthannaturallyoccurringambientenergyfieldsincludeelectromagneticfieldsusedinRFpoweredtags[4],inductivelypoweredsmartcards[5]andnon-invasivepacemakerbatteryrecharging[6].Ourapproachusesmechanicalvibrationastheambientenergysourceforgenerationofelectricalpower[7,8].Therefore,inthispaperavibration-basedmagnet-coilpowergeneratorisdescribed.

Themostimportantparametersinfluencingthedesignofsuchasystemareitsphysicalsizeandconversionefficiencies.Thesizeisdependentontheenergyrequirementandmustbeassmallaspossible,tobecompatiblewiththegeneraldesignobjectivesofMEMS.Howeverasthesizeofthedeviceisreduced,mechanicalresonancestendtoincreaseinfrequencyanditisthechallengeofgeneratingpowerfromcomparativelylowvibrationalfrequencies(hundredsofHzratherthankHz)thatisaddressedinthiswork.Theambientenergymaybeatapremiuminaparticularenvironmentsotheconversionefficiencymustbeashighaspossible.Toanalysethetransformationefficiencyandtoassesstheinput-outputrelationshipofsuchagenerator,fullelectromechanicalandmagneticanalyseshavebeencarriedout.Finiteelement(FE)techniquesforthemagneticfielddistributionsolutionhavebeenemployed.Fabricationandtestresultsofafirstprototypebasedonsimulationandmodellingresultsarefullydiscussed.Practicalamountsofpowerwithinreasonablespace(quarterofacubiccentimetre)havebeenachieved.

2THEGENERATOR

Aschematicdiagramoftheproposedelectromechanicalpowergenerator,illustratingdimensionedandlabelleddrawingsofbeam/magnetassemblyisshowninfigure1.Thesystemconsistsofacantileverbeamsupportedbythehousing.Themassonthebeamismadeupoftwomagnets(onepole)mountedonac-shapedcore.Arrangingthemagnetsinthiswayprovidesauniformmagneticfieldintheair-gap.Themainpurposeofthecoreistoprovideapathandguidethemagneticfluxthroughitwithaminimumoffluxleakage.Thecoilismadeupofanumberofsinglesolidcoreenamelledcopperwires.Itisplacedintheair-gapbetweenthemagnetsatrightanglestothedirectionofthemovementofthemass.

Theoperatingprincipleofthedeviceisasfollows.Asthehousingisvibrated,amechanicalinputforcefeedsintoasecondordermechanicalsystem,themassmovesrelativetothehousingandenergyisstoredinthemass-beamsystem.Thisrelativedisplacement,whichissinusoidalinamplitude,causesthemagneticfluxtocutthecoil.ThisinturninducesamotionalelectromotiveforceonthecoilduetoFaraday’slaw.Themagnitudeofthisvoltageisproportionaltotherateofchangeofthecoilposition.Theelectricalsysteminvolvedissimplyafirst-orderLRcircuitwiththeinductanceofthecoilinserieswiththeloadresistanceandtheparasiticresistanceofthecoil.

2.1Designanalysis

Inordertodetermineandpredictthepracticalperformanceofthedeviceelectromechanicalandmagneticanalyseshavebeenundertaken.

Considerthesystemshowninfigure1toconsistofapointmass(m)mountedontheendofabeamprovidingaspringstiffnessk(thevalidityofthisassumptionwillbediscussedlater).Variablesxandyarethedisplacementsoftheeffectivemassandthevibrationhousingrespectively.Itisassumedthatthemassofthehousingismuchgreaterthanmandmovementofthehousingisunaffectedbythemovementofthegenerator.Forasinusoidalexcitation

whereYistheamplitudeofvibrationandtheangularfrequencyofvibration,thefollowingdifferentialequationofmotionisobtained[9].

(1)

wherezistherelativedisplacementofthemasswithrespecttothevibratingbody,

kisthebeamstiffnessandcisadampingcoefficient.Thesolutiontoequation

(1)isgivenby:

(2)

Theinstantaneouselectricalpower,Pi,generatedbythesystemis

(3)

Whereceistheportionofthedampingattributabletoelectricalpowergeneration.

Hencethemagnitudeofthegeneratedpower,

is

(4)

andthegeneratedpowermaybewrittenas:

(5)

where

isthenaturalfrequencyofthesystemand

istheelectromagnetictransducerdampingfactor.Theoveralldampingfactorofthesystem,

includeslossesduetofriction,airresistance,etc.,

andisgivenby:

(6)

Thevoltage,e,andcurrent,i,generatedwithinthesystemcanbedescribedbythefollowingequations:

(7)

(8)

whereFeistheforcegeneratedbytheelectromechanicalcoupling,RcandLcaretheresistanceandinductanceofthecoilrespectivelyandthetransformationfactoris:

(9)

Here,Nisthenumberofturns,Bistheaveragefluxdensityintheair-gapandNlistheeffectivelengthofcoil.

IfthecurrentisdrivingaloadofresistanceRL,theelectricallygeneratedforcewillbe

(10)

Hencetheelectricallygenerateddamping,ce,willbe

(11)

andatfrequencieswheretheinductiveimpedanceismuchlowerthantheresistiveimpedances,theelectricallygenerateddampingratiowillbe

(12)

Operatingthedeviceatresonance,when

(aswe’reconsideringrelativelyhighQsystems),andsubstitutingfromequation(12)intoequation(5)givesthetotalelectricalpowergeneratedas:

(13)

2.2Determinationofdesignparameters

Fordeterminationofthedesignparameters,bothanalyticalandnumericaltechniqueshavebeenemployed.AnalyticaldesignprogrammesimplementedinMatLabenvironmentsarespecificallytailoredtocalculatethephysicalparameters,dimensionsandotherfunctionalrequirementsofthedevice.Ageneral-purposeelectromagneticfieldanalysisCADsoftwarepackage(VF-OPERA)thatusesfiniteelementmethodshasbeenusedtomodelandsolvethemagneticfielddistributioninarangeofdesignvariantsofthedevice[10].Thedesignparametersareiterativelyrefined,ultimatelyresultingintheoptimumdesign.

Forconvenienceandeaseoffabricationanarbitrarysize(thicknessandcross-sectionarea)forthemagnetandarelativelylargeair-gapof3mmhasbeenchosen.Thecorethicknessisdeterminedbytheneedtocarrythemagneticfluxinthecircuitwithoutexceedinganominalsaturationfluxdensityof1.6Tesla.ThecoreandmagnetsaremodeledinX-YsymmetryinOPERA-2dbydrawingtheirexactgeometryasasetofnon-overlappingregions.Figure2showsthemesheddiagramofthemagnetsandcoregeometry.TheirB-Hcharacteristicsaredefinedbycurvefittingandtocalculatethefluxdensityintheair-gapnon-linearstaticsolutionofthesystemisperformed.Figure3showsthevariationinfluxdensityalongthemagnetheightthroughthecentreoftheair-gap.Thenon-linearityoffluxdensityisduetofringingeffect.Theaveragefluxdensityintheair-gapiscalculatedbycomputingthefluxdensityalonganumberofpathsandtakingtheaverage.Figure4clearlyillustratesthatthevariationoffluxinthecorehavingathicknessof1mmiswellmaintainedwithinthepredefinedlevelof

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2