600铸型辅送机液压传动系统设计解读.docx

上传人:b****1 文档编号:1999729 上传时间:2023-05-02 格式:DOCX 页数:31 大小:653.44KB
下载 相关 举报
600铸型辅送机液压传动系统设计解读.docx_第1页
第1页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第2页
第2页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第3页
第3页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第4页
第4页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第5页
第5页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第6页
第6页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第7页
第7页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第8页
第8页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第9页
第9页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第10页
第10页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第11页
第11页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第12页
第12页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第13页
第13页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第14页
第14页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第15页
第15页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第16页
第16页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第17页
第17页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第18页
第18页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第19页
第19页 / 共31页
600铸型辅送机液压传动系统设计解读.docx_第20页
第20页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

600铸型辅送机液压传动系统设计解读.docx

《600铸型辅送机液压传动系统设计解读.docx》由会员分享,可在线阅读,更多相关《600铸型辅送机液压传动系统设计解读.docx(31页珍藏版)》请在冰点文库上搜索。

600铸型辅送机液压传动系统设计解读.docx

600铸型辅送机液压传动系统设计解读

机电工程

毕业设计说明书

 

设计题目:

600铸型辅送机液压传动系统设计

学生姓名:

学号:

专业班级:

指导教师:

2011年5月28日

 

目次

第1章铸型辅送机主机结构功能及技术要求…………………………………1

第2章铸型辅送机采用液压系统的优点………………………………………1

第3章铸型辅送机动力和运动分析……………………………………………2

3.1配置执行器并做动作周期顺序图…………………………………………2

3.2负载计算和速度计算………………………………………………………3

第4章确定液压缸几何参数及绘制工况图………………………………………4

第5章拟定液压系统图……………………………………………………………5

5.1选择液压回路………………………………………………………………5

5.2组成液压系统原理图………………………………………………………6

5.2.1插销缸插销-定位缸拔销:

……………………………………………………7

5.2.2步移缸前进……………………………………………………………………7

5.2.3定位缸插销-插销缸拔销……………………………………………………7

5.2.4步移缸返回……………………………………………………………………8

5.2.5卸荷…………………………………………………………………………8

第6章选定液压元件……………………………………………………………8

第7章步移液压缸的设计计算…………………………………………………10

7.1.缸筒的设计计算………………………………………………………………10

7.2.活塞杆的设计与计算…………………………………………………………11

7.3.工作行程的确定………………………………………………………………11

7.4.活塞的设计计算………………………………………………………………12

7.5.导向套的设计与计算…………………………………………………………12

7.5.1.最小导向长度的确定………………………………………………………12

7.5.2.导向套的结构设计…………………………………………………………13

7.6.端盖与缸底的设计与计算……………………………………………………13

7.7.缸体长度的确定………………………………………………………………14

7.8.排气装置的设计………………………………………………………………14

7.9.密封件、防尘圈的选用………………………………………………………14

7.10.油口的设计………………………………………………………………15

第8章液压油箱的设计计算……………………………………………………15

8.1.油箱的容量计算………………………………………………………………15

8.2.箱顶、空气过滤器、注油口的设计……………………………………………15

8.3.箱壁、清洗孔、吊耳、液位计设计……………………………………………15

8.4.箱底、放油塞、支脚设计……………………………………………16

8.5.吸油管和回油管设计…………………………………………………………17

第9章插销、定位液压缸的设计计算…………………………………………17

9.1.缸筒的设计计算………………………………………………………………17

9.2.活塞杆的设计与计算…………………………………………………………18

9.3.工作行程的确定………………………………………………………………18

9.4.活塞的设计计算………………………………………………………………18

9.5.导向套的设计与计算…………………………………………………………19

9.5.1.最小导向长度的确定………………………………………………………19

9.5.2.导向套的结构设计…………………………………………………………19

9.6.端盖与缸底的设计与计算……………………………………………………19

9.7.排气装置的设计………………………………………………………………20

9.8.密封件、防尘圈的选用………………………………………………………20

9.9.油口的设计………………………………………………………………20

设计总结…………………………………………………………………………21

致谢………………………………………………………………………22

参考资料…………………………………………………………………23

 

第1章铸型辅送机主机结构功能及技术要求

步移式铸型辅送机的功用是,有节奏地把输送小车向前移动一个小车距离,并能实现精准定位。

该机由铸型输送小车及其传动装置组成(见图1),每一个小车的车体中心都有一个定位孔,车体左右有两个滚轮2分别支撑在在两滚道1上,前后各一导轮9夹于两滚道之间。

每两个小轮的台面3以回转铰轴5相连接,车台面上放着砂型箱4。

由于每个车体和车台面之间的距离彼此对应相等,因此每个小车之间的节距相等,均为1m。

图1铸型传送机传动示意图

1—滚道;2—滚轮;3—小车台面;4—铸型;5—回转铰轴;

6—步移缸;7—车体;8—插销缸;9—导轮;10—定位缸

输送小车的步移和定位(先步移后定位)拟采用液压系统完成,已知小车步移所需的牵引力为40KN,要求循环周期为12s。

2铸型辅送机采用液压系统的优点

传动平稳。

在液压传动装置中,由于油液的压缩量非常小,在通常压力下可以认为不可压缩,依靠油液的连续流动进行传动。

油液有吸振能力,在油路中还可以设置液压缓冲装置,故不像机械机构因加工和装配误差会引起振动扣撞击,使传动十分平稳,便于实现频繁的换向;

质量轻体积小。

液压传动与机械、电力等传动方式相比,在输出同样功率的条件下,体积和质量可以减少很多,因此惯性小、动作灵敏;这对液压仿形、液压自动控制和要求减轻质量的机器来说,是特别重要的。

承载能力大。

液压传动易于获得很大的力和转矩。

易于实现过载保护。

液压系统中采取了很多安全保护措施,能够自动防止过载,避免发生事故。

液压元件能够自动润滑。

由于采用液压油作为工作介质,使液压传动装置能自动润滑,因此元件的使用寿命较长。

简化机构。

采用液压传动可大大地简化机械结构,从而减少了机械零部件数目。

便于实现“三化”。

液压元件易于实现系列比、标准化和通用化.也易于设计和组织专业性大批量生产,从而可提高生产率、提高产品质量、降低成本。

第3章动力和运动分析

3.1配置执行器并做动作周期顺序图

根据输送小车的动作和工况特点,所设计的液压系统拟采用三种液压缸的执行器配置方案,见表1.

三种液压缸在铸型辅送机的安装位置如图1所示。

工作时,当插销缸上升插入车体后,定位缸才能拔销,然后两个刚性连接的步移缸同步的通过两个插销缸,将输送小车向前移动一个小车的距离,随之定位缸插销插入小车定位孔使小车定位。

接着插销缸拔销,最后步移缸返回原位,等待下一周期的步移动作。

表1铸型输送机的执行器配置方案

执行器

功能

结构形式和特点

序号

名称

数量

1

步移液压缸

2

驱动小车移动

为了增大步移缸的推力而不致缸的尺寸过大,步移缸采用两个双杆活塞缸并联而成,两个步移缸的活塞固定,两个缸体刚性连为一体,并做往复运动。

2

插销液压缸

2

连接步移缸和小车

设在两步移缸刚性连接前后部位,用以连接步移缸和小车,带动小车前移;为了改善活塞缸的受力情况,插销缸采用单杆活塞缸。

3

定位液压缸

1

小车定位

保证输送带与各主机、辅机间正确的相对位置关系,采用单杆活塞缸。

三种液压缸的顺序为:

插销缸活塞上升(插销)→定位缸下降(拔销)→步移缸前移→定位缸上升定位(插销)→插销缸下降(拔销)→步移缸后退返回。

这些动作严格按顺序进行,即只有上一个动作完成后,下一个动作才开始,动作间互不重叠。

步移缸前进和返回行程均与小车节距相等,L1=1m,定位缸单向行程L2及插销缸的单向行程L3相等,即L2=L3=110mm。

为了满足循环周期为12s的要求,循环周期按下列情况细:

步移缸前进和后退各4s;插销缸插销和拔销分别为1.3s和0.9s(可调);定位缸拔销和插销各0.9s。

辅助时间合计4s。

据此做出的执行器周期动作顺序图如图2所示。

时间/s

图2铸型输送机周期动作顺序

3.2负载计算和速度计算

各液压缸速度的计算及结果见表2。

表2液压缸运动速度计算

执行器

计算式

速度/

说明

步移液压缸

0.25

步移缸的往返速度相等,定位液压缸往返速度相等

插销液压缸

插销

拔销

定位液压缸

对于步移缸的外负载m,忽略摩擦负载和惯性负载,只考虑工作负载,即牵引力Fe=40KN,所以其负载循环图可省略不画。

由于运动关系较为简单,固运动循环图也略去不画。

第4章确定液压缸几何参数,绘制工况图

各液压缸流量经计算后列入表3,具体液压缸尺寸计算见表后计算过程。

表3液压缸流量计算表

执行器

计算式

流量

说明

步移液压缸

22.078

132.47

步移缸往返流量相等,定位缸往返流量相等。

插销液压缸

插销

2.433

14.58

拔销

3.504

21.02

定位液压缸

1.752

10.51

液压缸几何参数的计算过程:

对于步移缸,根据参考文献【1】的表5-6,预选缸的设计压力P1=5MP。

根据受力情况取活塞杆的外径d=60mm=0.06m(标准值)。

忽略各种损失,则由力平衡方程

可求出步移缸的内径D为

按GB/T2348-1993,取标准值D=125mm=0.125m。

据此,可算得步移缸的有效作用面积A和实际工作压力P1为

对于插销缸和定位缸,经受力分析及考虑到液压缸的刚性及美观,将其活塞杆直径取为d2=80mm=0.8m,缸内径取为D2=100mm=1m(均为标准值)。

第5章拟定液压系统图

5.1选择液压回路

铸型输送机液压系统共两类三种执行器,工作性质不同,且有严格的动作顺序,为此,总体上将作为工作执行器的步移液压缸、作为辅助执行器的定位液压缸和插销液压缸各划分为一个支路并且相互关联,而定位液压缸与两插销液压缸又相互并联,两插销液压缸相互并联。

步移液压缸由于其往返速度相同,且不需要调速,但为了满足往返运动到端点避免冲击达到准确定位的要求,采用双向减速回路,即在进油路上装设两个单向行程减速阀,当步移缸运动至接近终点时压下行程减速阀的阀芯而减速。

考虑到定位液压缸的插销和拔销速度相同,且不需要调速;而两插销液压缸的插销和拔销时间要求可以调节,为此在各插销缸支路上采用回油节流调速回路,在实现调速功能的同时并由此保证两缸同步。

由于已选用减速和节流调速回路,固系统必然为开环循环方式。

其次选择油源形式:

由流量循环图可知,系统中三个液压缸所需流量以步移缸最大,但考虑到各缸运行时间较短,固选用单定量供油泵,当然,泵的流量需按步移缸的要求确定。

选择换向回路:

考虑系统流量较大,为保证换向平稳,固对步移缸单独使用一个三位四通电液动换向阀换向;而并联的定位缸与两插销缸则共用另外一个三位四通电液动换向阀换向;并采用活动挡块压下电气行程开关控制换向阀电磁铁的通断电实现自动换向。

电液动换向阀则采用辅助泵供油的控制方案。

步移缸与辅助缸的动作顺序控制,采用活动挡块压下电气行程开关控制换向阀电磁铁的通断电的行程控制方式;而并联的定位缸与两插销缸之间的顺序控制则采用单向顺序阀的压力控制方式,实现自动换向。

选定压力控制回路:

在主液压泵出口并联一个溢流阀,实现系统调压溢流;在主液压泵出口并联一个远程卸荷阀(由辅助泵供油并采用一个二位四通电磁换向阀切换控制),用于使步移缸返回后,等待下一周期开始的时间继电器发令前,液压泵卸荷,以实现节能。

在辅助泵出口并联一个溢流阀,以限定其最高供油压力。

5.2组成液压系统原理图

图3铸型输送机液压系统原理图

1-主液压泵;2-辅助液压泵;3-单向阀;4,5-溢流阀;7二位四通电磁换向阀;8,9-三位四通电液换向阀;10,11-单向行程减速阀;12,13-单向顺序阀;14,15-单向节流阀;16,17-插销缸;18-定位缸;19-步移缸;20,21-压力表及其开关;22,23-过滤器

在主回路初步选定基础上,再增加一些辅助回路即可组成一个完整的液压系统,如图3所示。

例如,在2液压泵出口分别设一压力表及其开关20和21,以便观测泵的压力等;在泵的进口分别设置过滤器22和23,以保证油液清洁。

系统动作顺序表见表4。

系统的工作原理简述如下。

当按下启动按钮后,辅助泵2启动,同时电磁铁5YA通电使二位四通电磁换向阀切换至下位,主液压泵1空载(卸荷)启动,周期继电器到时后发信,使电磁铁5YA断电,卸荷阀6关闭,液压系统按下列顺序开始运行。

表4铸型辅送机液压系统动作顺序图

序号

信号来源

动作名称

电磁铁状态

1YA

2YA

3YA

4YA

5YA

1

按下启动按钮

液压泵1、2启动

+

2

周期时间继电器

插销缸插销

(定位缸拔销)

+

3

压下行程开关3SQ

步移缸前进

+

4

压下行程开关4SQ

定位缸插销

(插销缸拔销)

+

5

压下行程开关1SQ、2SQ

步移缸返回

+

6

压下行程开关5SQ

液压泵卸荷

+

5.2.1插销缸插销-定位缸拔销:

周期时间继电器发信,使电磁铁3YA通电,换向阀9切至右位,此时的油液

流动路线如下。

进油路:

主泵1的压力油→单向阀3→换向阀9(右位)→插销缸16和17的下腔,使两插销缸的活塞杆伸出(插销),当活塞上升至上止点时,油压升高,压力油打开顺序阀13进入定位缸18的上腔,使定位缸活塞杆下降(拔销)。

回油路:

两插销缸16、17上腔→单向节流阀14、15→单向顺序阀12中的单向阀→与定位缸下腔回油一起→换向阀9(右位)→油箱。

5.2.2步移缸前进:

定位缸拔销后,压下行程开关3SQ,使电磁铁1YA通电,换向阀8切换至左位,3YA断电,换向阀9复至中位。

此时的油液流动路线如下。

进油路:

主泵1的压力油→单向阀3→换向阀8(左位)→单向行程减速阀10→步移缸19左腔,使步移缸缸筒向前移动,当步移缸行至终点时,缸体压下单向行程减速阀10,进行节流减速,缸缓慢停止。

回油路:

步移缸19左腔→单向行程减速阀11→换向阀8(左位)→油箱。

5.2.3定位缸插销-插销缸拔销:

步移缸前移到左端点时压下行程开关4SQ,使电磁体1YA断电(换向阀8复至中位),同时4YA通电(换向阀9切至左位),此时的油液流动路线如下。

进油路:

主泵1的压力油→单向阀3→换向阀9(左位)→定位缸18的下腔,使定位缸活塞杆上升(插销)。

当活塞上升至上死点时,系统压力升高,打开单向顺序阀12,压力油→单向节流阀14、15中的单向阀→插销缸上腔,使插销缸活塞返回(拔销)。

回油路:

定位缸上腔→单向顺序阀13的单向阀后和插销缸下腔的回油一起→换向阀9(左位)→油箱。

5.2.4步移缸返回:

两插销缸活塞返回到终点时,挡铁压下行程开关1SQ和2SQ,使电磁铁2YA通电(换向8切换至右位),4YA断电(换向阀9复至中位)。

此时的油液流动路线如下。

进油路:

主泵1的压力油→单向阀3→换向阀8(右位)→单向行程减速阀11→步移缸19左腔,使步移缸缸筒向后退回,当步移缸快行至右端终点时,缸体压下单向行程减速阀11,进行节流减速,缸缓慢停止。

回油路:

步移缸19左腔→单向行程减速阀10的单向阀→换向阀8(右位)→油箱。

5.2.5卸荷:

当步移缸返回原位压下行程开关5SQS时,时电磁铁2YA断电(换向阀8复至中位)、5YA通电(换向阀7切至下位),辅助泵2的压力油打开卸荷阀6,主泵1经阀6卸荷。

输送小车停止不动,直至周期时间继电器发信,才重复上述工作循环。

第6章选择液压元件

首先确定液压泵的最高工作压力:

前已算出步移缸的工作压力P1=5.14MPa,考虑到本系统油路较为简单,固取泵至缸间的进油路压力损失为ΔP=0.4MP,则根据参考文献【1】的式5-3得主液压泵的最高工作压力为

确定液压泵的流量:

液压泵的最大供油量

按液压缸的最大输入流量(

)估算。

根据参考文献【1】的式5-4取泄露系数K=1.2,则

最后确定液压泵及其驱动电机的规格:

根据以上计算结果查阅机械设计手册参考文献【2】,选用规格相近的YB-C171B型液压泵,其额定压力为7MPa,排量为176.9mL/r,额定转速为1000r/min,额定工况下能保证输出流量157.6L/min。

由参考文献【1】的表5-13取泵的总效率

,则所需电机功率为

表5铸型输送机液压系统元件型号规格

序号

元件名称

额定压力

额定流量

型号、规格

说明

1

主液压泵

7

157.6

YB-C171B

额定转速1000r/min,驱动电机功率18.5KW

2

辅助液压泵

7

11.9

YB-A9B

额定转速1000r/min,驱动电机功率2.1KW

3

单向阀

16

160

AF3-Ea20B

通径为20mm,最低控制压力0.6MPa

4

先导式溢流阀

0.85

~7

(调压范围)

170

CG-03-B

通径为10mm

5

先导式溢流阀

0.5~6.3

(调压范围)

63

YF3-10B

通径为10mm

6

卸荷阀

(远控顺序阀)

3~7

(控压范围)

150

X3F-B32F

通径为32mm

7

三位四通电磁换向阀

16

25

24DF3-E6B

通径为6mm

8、9

三位四通电液动换向阀

6.3

180

34DYF3-16B

通径为16mm,最低控制压力0.6MPa

10、11

单向行程减速阀

21

200

ZCG-10

通径为10mm

12、13

单向顺序阀

1.7~7

(调压范围)

284

RC-G-10-D

通径为

in

14、15

单向节流阀

16

100

ALF3-E10B

通径为10mm

20、21

压力表及其开关

约6.3(压力指示范围)

AF6P30/Y63

通径为6mm,此压力表开关带压力表

22

过滤器

<0.02

(压力损失)

160

XU-160×80J

通径为40mm

23

过滤器

<0.02

(压力损失)

16

XU-160×80J

通径为12mm

注:

1.此表所列液压元件均按参考文献【2】选出。

2:

表中序号与图3中元件标号相同,但未包括标号为16~19的四个液压缸(需自行设计)。

选用电动机型号:

查表5-14,选用规格相近的Y200L1-6型封闭式三相异步电动机,其额定功率18.5KW,转速为970/min。

为了节省篇幅,此处仅介绍主泵及其驱动电动机的选择,其他元件则仅给出结果(不含管件)。

连同其他液压元件的型号一并列入表5.

7步移液压缸的设计计算

由方案论证报告中所算的液压缸参数有:

缸筒内径D=125mm,活塞杆直径d=60mm

7.1.缸筒的设计计算:

缸筒是液压缸的主体零件,它与端盖。

缸底,油口等零件构成密封的容腔,用以容纳压力油,同时它还是活塞的运动轨道。

设计液压缸缸筒时,应该正确确定各部分尺寸,保证液压缸油足够的输出力,运动速度和有效行程,同时还具有一定的强度,能足以承受液压力,负载力和意外的冲击。

另外,液压缸内表面应具有合适的配合精度,表面粗糙度和几何精度,以保证液压缸的密封性,运动平稳性和耐用性。

液压缸缸筒内径:

由前面的计算过程中可知

缸筒外径经查参考文献【1】表21-6-9得:

,壁厚为

缸筒材料为35钢,其

进行强度校核:

故壁厚强度校核通过。

缸筒结构设计:

缸筒两端分别与缸盖与缸底连接,构成密闭的压力腔。

因此,在设计缸筒结构时,应考虑到缸盖与缸底的安装以及导向套的安装,具体结构见图4;

图4缸筒及其与导向套、缸盖的连接结构

7.2.活塞杆的设计与计算

活塞缸是液压缸传递力的主要零件,它要承受拉力压力弯曲力及震动冲击等多种作用,必须有足够的强度和刚度。

活塞杆的直径:

60mm

活塞杆的强度校核:

活塞杆材料选用35无缝钢管,

活塞杆的结构设计

活塞杆外端头部与机架采用外螺纹相连接,经查参考文献【3】表3-4知活塞杆外端头部螺纹采用M80

3,L=95的无肩外螺纹连接方式。

7.3.工作行程的确定:

液压缸工作行程长度可以根据执行机构实际工作的最大行程确定,结合实际情况查参考文献【3】表3-8知,液压缸工作行程为1000mm

7.4.活塞的设计计算

由于活塞在缸筒的作用下沿缸筒往复滑动,因此,它与缸筒的配合应适当,既不能过紧,也不能间隙过大。

配合过紧,不仅使最低启动压力增大,降低机械效率,而且容易损坏缸筒和活塞的配合表面;间隙过大,会引起液压缸的内部泄露,降低容积效率,使液压缸达不到要求的设计性能。

因此在结构上应慎重考虑,具体结构见图5.

图5活塞及其与活塞杆的连接结构

7.5.导向套的设计与计算

7.5.1.最小导向长度的确定

当活塞杆全部伸出时,从活塞支撑面中点到导向套滑动面中点的距离称为最小导向长度。

如果导向长度过短,将使液压缸因间隙引起的初始挠度增大,影响液压缸工作性能和稳定性。

因此,在设计时必须保证液压缸有一定的最小导向长度。

对于一般液压缸,最小导向长度应满足下式要求:

式中,L为最大工作行程,D为缸筒内径。

导向套滑动长度A,当缸径大于80mm时,取

,活塞宽

7.5.2.导向套的结构设计

导向套有普通导向套,易拆导向套,球面导向套等,查参考文献【3】表3-11使用普通导向套,具体结构见图6.

图6导向套及其与缸筒连接结构

7.6.端盖与缸底的设计与计算

在单活塞杆液压缸中,有活塞杆通过的缸盖叫端盖,无活塞杆通过的缸盖叫缸头或缸底。

缸盖、缸底和缸筒构成封闭的压力容腔,它不仅要有足够的强度以承受液压力,而且必须具备一定的连接强度。

端盖上有装导向套的孔及防尘圈密封圈槽,还有连接螺钉孔,受力情况比较复杂,设计的不好容易损坏。

端盖的设计计算:

端盖厚度为:

缸底分为平缸底,椭圆缸底,半球形缸底;为使结构简单,安装方便采用平缸底。

缸盖的结构设计:

缸盖在结构除了要解决与缸体的连接与密封外,还必须考虑活塞杆的导向,密封与防尘问题。

查[3]表3-12知缸体与缸盖的连接方式采用法兰连接方式。

7.7.缸体长度的确定

液压缸缸体长度=行程+导向套长度

2+活塞宽度+端盖相关厚度=1000+100

2+40+125=1267mm

7.8.排气装置的设计

如果排气装置设置不当或者没有设置排气装置,压力油进入液压缸后,缸内仍会存有空气。

由于空气具有压缩性和滞后扩张性,会造成液压缸及整个液压系统在工作中颤震或爬行,影响液压缸的正常工作。

排气装置的位置要合理,由于空气壁压力油轻,总是向上浮动,因此水平放置的液压缸两腔端部上方应设置排气装置。

排气装置选用整体排气塞。

7

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2