机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc

上传人:wj 文档编号:226965 上传时间:2023-04-28 格式:DOC 页数:17 大小:2.37MB
下载 相关 举报
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第1页
第1页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第2页
第2页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第3页
第3页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第4页
第4页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第5页
第5页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第6页
第6页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第7页
第7页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第8页
第8页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第9页
第9页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第10页
第10页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第11页
第11页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第12页
第12页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第13页
第13页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第14页
第14页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第15页
第15页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第16页
第16页 / 共17页
机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc

《机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc(17页珍藏版)》请在冰点文库上搜索。

机械创新设计大赛(省二等)设计说明书Word文档下载推荐.doc

因此我们必须选择一种质轻且有足够强度的材料。

通过在材料市场上了解,以及询问指导老师的意见,我们选择了合金角铝型材作为该机器人的框架结构搭建材料。

工作时通过折叠架实现车身的升降,以达到对较高位置物品的取放目的。

2.2、行走机构

机器人的行走机构为车轮方式:

左右轮为驱动轮,分别受左右两个带减速器的直流电机控制,前后轮为万向轮(从动轮),由此构成四轮对称结构。

左、右轮除负责前进与后退外,当两轮的转速不同时,还可以实现曲线行走以及原地旋转。

电机控制车轮运动情况如下:

左电机状态

右电机状态

机器人运动情况

正转

直线前进

反转

直线后退

右转弯

左转弯

原地顺时针旋转

原地逆时针旋转

本机器人采用红外线传感器阵列(如图均布于车底,用于巡线)和超声波传感器(布置于车身周围,用于避障),将检测到的信号经过AT89C52单片机进行判断和处理,进而控制分别固连在两主动轮的电机进行工作,使机器人实现任意方式的行走。

2.3、升降架设计

该升降架采用折叠伸缩衣架的原理,极大地减小了机器人的体积,且能改变作业的高度,可操作性较好,同时连杆结构增加了车体的刚度,减轻了车体重量。

此外,我们还实地考察了重型升降架的结构,并在本机器人升降结构上得到了很好的运用。

它采用两排折叠机构,中间靠两根杆固连在一起,以实现整体同步平稳地升降。

升降架采用合金铝型材进行设计加工,相邻部分通过螺丝连接,形成旋转铰支。

它分别与基座和顶部连接,一端构成铰支结构,另一端靠连接轴承轮在导轨上滑动。

通过驱动连杆末端的水平方向的移动,来实现车身的垂直方向的升降。

2.4、转动平台的设计

转动平台的设计一是为了安放机械手驱动电机,二是承载上端载荷,缓解对旋转电机输出轴的力矩。

它与旋转电机共同作用,实现机械手的旋转,从而完成取物的后处理过程。

2.5、机械手的设计

考虑到夹持物品时的稳定性因素,我们放弃了原定的叉车的取物方式,特采用目前的柔性机械手的设计。

该机械手能进行包络抓取,控制精确稳定,并且负载能力较强,能够应用于对较大尺寸、形状变化范围物品的抓取。

此外,该柔性机械手采用线驱动控制,使结构更加简单,且驱动及编程更易于实现。

该机械手模拟人手的构造进行设计,取物方式类似于人手。

它由两排共计14个大小相同的连接件组成,见图。

各连接件通过螺丝搭接在一起,并采用双螺母进行自锁,该部分相当于人的指关节。

各连接件沿轴向两侧分别打上穿线孔,通过两根线反向缠绕于绕线轮,使电机输出轴与绕线轮固连,通过电机的转动实现机械手的张开与合拢。

2.6、螺杆传动

螺杆传动就是通过电机带动螺杆旋转,从而带动与螺杆相啮合的螺母进行直线运动。

该室内物品取送机器人采用此种机构,用以实现升降架的升降控制。

如图所示,电机通过联轴器与螺杆固接在一起,然后通过一个特殊的固定机构,将螺杆上的螺母与垂直于螺杆的传动杆相连,将螺母的旋转运动转变成直杆的水平移动。

直杆的两端分别固接于升降架的两个运动端,直杆的水平移动带动升降架的升降运动,从而实现了将电机的动力输出通过螺杆机构转移到升降架的垂直移动。

该机构的特殊之处在于:

1、通过螺杆机构将水平运动转变为垂直运动;

2、螺母与直杆的固接机构,出自于一个异体同构思想的创新;

3、为了进一步稳定螺母的输出,使得水平直杆能够稳定平移,采用了双螺母固定。

3、电子部分

3.1、系统总体控制

室内物品取送机器人主控系统的结构框图如图1所示。

系统主要由单片机控制系统、传感器系统、电机驱动系统3大部分组成。

其中单片机控制系统的处理器采用国产芯片STC12C52RC,完全可以胜任本系统的计算和处理速度。

运动系统主要通过单片机给出的多路PWM信号对各个电机进行控制。

传感器系统由超声波测距传感器、红外模块等组成。

各部分采用模块化设计,具有一定的扩展性,开发维护简单易行。

3.2、超声波模块

 超声波是一种一定频率范围的声波,它具有在同种媒质中以恒定速率传播的特性,而在不同媒质的界面处,会产生反射现象。

利用这一特性,根据测量发射波与反射波之间的时间间隔,从而达到测量距离的作用。

其具体的计算公式为:

s=v×

t/2。

 其中,s为障碍物与机器人之间的距离;

t为从发射到接收经历的时间;

v为声波在空气中传播的速度。

 

在室内物品取送机器人中,避障功能的实现正是利用了超声波测距的原理。

它的传感器部分由三对(每对包括一个发射探头和一个接收探头)共六个超声波传感头组成。

探测范围的确定:

由于每一个超声波探头都有一定的指向性(即发射或接受的空间范围),所以在测量时必然存在盲区(如图2)。

因此,三对传感器必然以一定的尺寸分布在机器人的周围,从而使传感器测量的范围包含整个室内物品取送机器人所必须经过的空间,同时又避免探测死角(既使盲区落在须测量的范围之外)。

控制部分的核心是89C52单片机,它根据接收的信号(左、中、右三路)的幅值,以及从发射到接收的时间间隔,计算并判断障碍物的相对位置。

在此基础上,根据事先设定的规则,选定相应的避障措施(前进、左转、右转、后退、调头)。

在确定了避障措施后,要向电机的控制器输出相应的控制脉冲,以实现避障。

3.3、路径规划设计

路径规划是服务机器人顺利完成智能空间中各种服务(如物品抓取、目标跟踪)的基本环节之一,定义为按照某一性能指标搜索一条从起始状态到目标状态的最优或近似最优的无碰路径。

为了实现高精度实时定位目标,采用红外线传感器阵列。

89C52单片机检测光电传感器的信号,并控制两个直流驱动电机状态。

3.4、电源变换电路设计

机器人的供电系统分为两部分:

单片机需要+5V的电源,而直流电机需要+12V的

电压驱动。

机器人系统采用+12V的可充电铅酸蓄电池进行供电,通过稳压芯片进行降压处理,以此来获得+5V电压。

电压转换原理图如下。

3.5、自动充电系统的设计

充电站设置在墙壁上固定位置,通过发射红外线信号的遥控器,用来向机器人提供充电站位置信号。

机器人通过背面左右对称的两套一样的红外接收装置来判断充电器的方位,进而调整车体的运动。

电极对接后,机器人停止所有功能,转入休眠的充电状态。

两个红外接收器的信号接收情况与机器人运动方向的控制关系为:

右红外接收头

左红外接收头

机器人方向状态

控制内容

无信号

机器人没有检测到充电站的红外信标

原地旋转并进行检测,转三圈仍检测不到,移动一个位置再旋转检测,直到发现信标为止

有信号

基本对准充电站,但机器人的方向偏左

右旋转,同时检测,直到两个接收头均有信号再直线后退

基本对准充电站,但机器人的方向偏右

左旋转,同时检测,直到两个接收头均有信号再直线后退

机器人正对充电站

直线后退可到达充电站并与充电站实现电极的对接完成充电

鉴于资金及时间等问题,初步设计暂以蓄电池代替该部分完成其余所有的预期功能,而自动充电系统有待于进一步设计和改进。

4、具体实施方式

4.1、工作原理

通过遥控器给机器人一个指令,机器人通过传感器采集环境信息传递给单片机,然后单片机通过输出控制信号控制各个电机的运动状态来实现预定功能。

运动方式如下:

车轮电机34直接驱动主动轮29以实现各个方向的运动;

电机22通过联轴器21带动螺杆20,螺杆20将旋转动力转化为螺母25的直线运动,螺母25带动连杆27使升降杆15连接成四边形结构水平运动转化为垂直运动,由此带动载物台24的升降运动;

电机11带动支架10做旋转运动以实现机械手的方向改变;

电机9通过线6是机械手处于张开或闭合状态。

4.2、材料及安装技术要求

如图2所示机械手结构,机械手的每个手指3通过两侧的连接孔2用螺钉连接,末端三个关节通过固定板4固死,机械手通过螺钉连接在支架10上,电机8通过紧配合固定在支架10上,绕线轮7固定在电机8的轴上,线6通过穿线孔1连接每个手指3并将线6的末端固定在绕线轮7上的穿线孔8上。

支架10固定在电机11的轴上,由此得到机械手。

如图3、4、6、7、9所示的升降架结构,滑槽12和支架23通过螺钉固定在载物台24上,升降杆15通过螺钉固定在支架23上,轴承13、19也通过螺钉固定在升降杆15上,并分别卡进滑槽12、18中,连杆27通过其上盲孔39固定到连接轴承13、19的螺钉上;

升降架15之间通过螺钉连接成四边形结构;

螺杆20一端固定在轴承17的内孔中,另一端通过联轴器21连接在电机22的轴上;

轴承17固定在轴承座16上的轴承孔42中;

螺母25通过连接件26上的螺纹孔35固定在连接件26上的槽38内;

连杆27固定到连接件26的通孔36中;

螺母连接在螺杆20上。

由此得到升降架结构。

如图5、8所示的行走机构,支架28通过螺钉连接成框架结构;

底板33、车轮电机34通过螺钉连接到支架28上;

万向轮32固定到底板33上;

车轮29固定到车轴30上的轴40上,车轴30连接到车轮电机34的轴上。

由此得到行走机构。

附图说明

图1是手指关节图。

图中:

穿线孔1、连接孔2。

图2为手结构图。

手指3、固定板4、连接螺钉5、线6、绕线轮7、穿线孔8、电机9、支架10、电机11。

图3为升降架结构。

滑槽12、轴承13、连接孔14、升降杆15、轴承座16、轴承17、滑槽18、轴承19、螺杆20、联轴器21、电机22、支座23、载物台24。

图4为升降架结构前视图。

螺母25、连接件26、连杆27.

图5为车体基座结构。

图中:

支架28、主动轮29、车轴30、连接螺钉31、万向轮32、底板33、车轮电机34。

图6为连接件结构图。

螺纹孔35、通孔36、槽37、槽38。

图7为连杆结构图。

盲孔39。

图8为车轴结构图。

轴40、盲孔41。

图9为轴承座结构图。

固定孔42、轴承孔42。

图1

图2

图3

图4

图5

图6

图7

图8

图9

四、机构受力分析与校核

1、机械手驱动电机

假设机械手工作状态如图示,实际起夹持作用的有6个连接件,因此接触面共有6个,近似为正六边形。

对关节A受力分析,可知:

A受到线1的拉力与线2的拉力作用,夹角为,由于同一根线各点受力均匀,因此有==F,得到=F,同理有=F。

对连接件AB受力分析后得M点对物品的压力。

已知绕线轮半径R=10mm,电机输出转矩应满足。

查表得摩擦系数,对待取物品进行受力得:

,即,假定转速为24r/min,则由,求出P=0.03w。

于是,机械手驱动电机参数如下:

型号:

GW370,电压:

DC12V,空载转速:

24r/min,负载转速:

18r/min,输出扭矩:

5kg.cm

额定电流:

0.3A,重量:

0.18kg。

2、车轮驱动电机

取车轮与地面的摩擦系数为=2,每个驱动车轮受到地面支持力N=,已知车体总重m=4Kg,车轮与地面之间的摩擦力:

N。

由于驱动力全部来自两个驱动电机,所以取=40N计算,

Nmm,故可以取T=500Nmm。

所以选择车轮驱动电机参数如下:

3、螺杆驱动电机的选择

由升降架的运动学分析,假设A、B两点的速度分别为和,且二者沿杆方向速度分量相等,即

由几何关系,‚

已知杆AC长L=300mm,当由变化到,A点得位移S=ƒ

由位移与速度的关系可知,④

由上述各式得到。

为了便于启动,设定,升降架升高H=300mm,于是h==150mm,则求出49.36,即为终了时AC与水平线夹角。

A点初始位置为A0,整个工作区间水平位移,规定t=0.5min时间内平台到达指定高度,则A点移动速度3.15mm/s,电机直接驱动螺杆转动转化为螺母的移动,关系为:

,其中P=8mm,为螺杆的螺距。

求出n=23.625r/s。

根据能量守恒定理,电机做功转化为系统增加的重力势能(不计摩擦阻力),其中m=2Kg,得到,求得电机功率为P=0.2w。

故选择电机参数如下:

4、螺杆强度校核

细长螺杆由于受到较大的轴向力的作用时,可能会丧失稳定(发生随机侧弯),其临界载荷与材料、螺杆细长比(或则称为柔度)有关。

(1)当时,临界载荷由欧拉公式决定;

式中:

E——螺杆材料的弹性模量,对于钢材E=;

I——危险截面的惯性矩,度螺杆可按螺纹小径计算,则;

L——螺杆的最大工作长度(mm);

u——长度系数,与螺杆端部的结构有关:

对于传导螺杆可视为两端铰支,取。

i——螺杆危险截面半径,若螺杆危险截面面积,则。

(2)当时,

对于的碳素钢取;

对于的优质碳素钢取。

(3)当时,不必进行稳定性校核

稳定性校核应满足的条件为

S为稳定性校核的安全系数,通常取S=2.5--4。

该机器人螺杆小径=7mm,u=1,=300mm,得到=171.4,则=660N,升降架以上重量大约为2Kg,远小于该螺杆的最大承受载荷,故满足稳定性校核设计。

5、机械手材料选择

机械手要抓起1Kg重的物体,对摩擦系数要求较高,可以在机械手爪内侧粘上一层橡胶以增加其与待取物品的摩擦系数。

已知物体与机械手之间的摩擦系数约为0.8,则夹紧力临界值为

而有机玻璃板的冲击强度≥16kg/cm3

,抗冲击强度高且易于进行车削加工,故选用有机玻璃来制作机械手,完全可以满足使用要求。

五、成本预算及分析

购买材料

支出预算

用途

加工场所

备注

轴承

80

升降架移动轮、螺杆转动

10个

电机

200

驱动车轮、机械手、螺杆、转动平台

5个

联轴器

10

连接螺杆和电机输出轴

童车轮

70

驱动轮

2个

有机玻璃板

250

制作底板、载物平台、机械手、转动平台、轴承座等

数控加工中心

两种厚度:

5mm、20mm

铅酸蓄电池

为系统供电

12V

铝合金型材

150

升降架、基座框架

螺丝包

连接、固定

丝杠

20

传递运动

1m

万向轮

提供支撑、导向

2

超声波模块

60

避障

3个

红外模块

30

巡线

电机驱动模块

90

驱动电机动作

L298,3个

鱼线

10

控制机械手

遥控模块

发送信号

两套

单片机最小系统

控制

直流可调降压器

降压

LM2596,1个

总费用

1200

六、产品创新点与市场前景

1、创新点

1.采用柔性机械手的线驱动控制,使结构更加简单,驱动及编程更易于实现;

2.该机器人针对室内物品相对固定的特点,采用了坐标以实现对机器人的定位,省去了对复杂环境的辨识环节,同时也使处理器运算量降低,使得采用低端处理器成为可能;

3.采用折叠连杆升降机构,降低了车体的高度,节省了材料和空间;

4.该机器人通过自动充电以实现长时间续航;

5.系统根据行走路线,由红外传感器阵列实现巡线功能,保证了路线的准确性。

2、市场前景

步入二十一世纪,随着人们生活质量的提高,对机械设计的安全性、稳定性、适用性和实用性提出新的要求,并且针对特殊人群如老年人和残疾人的机械设计,有着广阔的应用空间。

当下机器人制造和使用成本居高不下,且使用范围推广普遍性不够。

本产品从上述几点出发,通过对家庭环境分析,创造性地提出了结构简单、性能稳定且成本低廉的家庭服务机器人,使得机器人能够走进大多数人的家庭,更好地服务于人们的日常生活之中。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2