电子技术课后答案.docx

上传人:b****1 文档编号:2387768 上传时间:2023-05-03 格式:DOCX 页数:25 大小:637.33KB
下载 相关 举报
电子技术课后答案.docx_第1页
第1页 / 共25页
电子技术课后答案.docx_第2页
第2页 / 共25页
电子技术课后答案.docx_第3页
第3页 / 共25页
电子技术课后答案.docx_第4页
第4页 / 共25页
电子技术课后答案.docx_第5页
第5页 / 共25页
电子技术课后答案.docx_第6页
第6页 / 共25页
电子技术课后答案.docx_第7页
第7页 / 共25页
电子技术课后答案.docx_第8页
第8页 / 共25页
电子技术课后答案.docx_第9页
第9页 / 共25页
电子技术课后答案.docx_第10页
第10页 / 共25页
电子技术课后答案.docx_第11页
第11页 / 共25页
电子技术课后答案.docx_第12页
第12页 / 共25页
电子技术课后答案.docx_第13页
第13页 / 共25页
电子技术课后答案.docx_第14页
第14页 / 共25页
电子技术课后答案.docx_第15页
第15页 / 共25页
电子技术课后答案.docx_第16页
第16页 / 共25页
电子技术课后答案.docx_第17页
第17页 / 共25页
电子技术课后答案.docx_第18页
第18页 / 共25页
电子技术课后答案.docx_第19页
第19页 / 共25页
电子技术课后答案.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

电子技术课后答案.docx

《电子技术课后答案.docx》由会员分享,可在线阅读,更多相关《电子技术课后答案.docx(25页珍藏版)》请在冰点文库上搜索。

电子技术课后答案.docx

电子技术课后答案

第4章集成运算放大器的应用

4.1在如图4.2所示电路中,稳压管稳定电压乞=6V,电阻&一叨kQ,电位器&

Q,试求调节Rf时输出电压uo的变化范围,并说明改变电阻Rl对uo有无影响。

分析本题电路由一个反相输入比例运算电路和一个稳压电路组成,反相输入比例运算电路

的输入电压从稳压管两端取得,即S—。

解根据反相输入比例运算电路的电压传输关系,得:

n_=——it=—-—

&A

由上式可知输出电压Uo与负载电阻Rl无关,所以改变电阻Rl对uo没有影响。

当比^时,有:

%"

却丿…护―(V)

所以,调节Rf时输出电压uo可在V范围内变化。

 

4.2在如图4.3所示电路中,稳压管稳定电压乞二fiV,电阻^=,°kQ,电位器=Wk

Q,试求调节Rf时输出电压uo的变化范围,并说明改变电阻Rl对uo有无影响。

图4.3习题4.2的图

分析本题电路由一个同相输入比例运算电路和一个稳压电路组成,同相输入比例运算电路

的输入电压从稳压管两端取得,即5。

解根据同相输入比例运算电路的电压传输关系,得:

3卜舒卜駆

由上式可知输出电压Uo与负载电阻Rl无关,所以改变电阻Rl对uo没有影响。

当&"时,有:

所以,调节Rf时输出电压uo可在6~12V范围内变化。

4.3如图4.4所示是由集成运算放大器构成的低内阻微安表电路,试说明其工作原理,并确定它的量程。

mtJ-A

图4.4习题4.3的图

分析本题电路是一个反相输入电路,输入电流I就是待测量的电流。

由于电阻R引入了电

压串联负反馈,所以集成运算放大器工作在线性区,可以应用“虚断”和“虚短”两条分析依据分析。

解由于集成运算放大器工作在线性区,故°,流过微安表的电流If就是待测量的电流

I,即:

被测电阻

所以微安表的量程就是该电流表的量程,为50卩A。

4.4如图4.5所示是由集成运算放大器和普通电压表构成的线性刻度欧姆表电路,Rx作反馈电阻,电压表满量程为2V。

(1)试证明Rx与Uo成正比。

(2)计算当Rx的测量范围为0〜10kQ时电阻R的阻值。

图4.5习题4.4的图

2V,反馈电阻Rf就是被测

分析本题电路是一个反相输入比例运算电路,输入电压电阻Rx,即鸟堆。

(1)根据反相输入比例运算电路的电压传输关系,得:

V_U=tf;

R

所以:

可见被测电阻Rx与输出电压uo成正比。

(2)当Rx最大(10kQ)时电压表满量程(2V),因此得:

'■-(kQ)

4.5如图4.6所示为一电压-电流变换电路,试求输出电流io与输入电压ui的关系,并说明

改变负载电阻Rl对io有无影响。

分析本题电路是一个同相输入电路,由于电阻R引入了电流串联负反馈,所以集成运算放

大器工作在线性区,可以应用“虚断”和“虚短”两条分析依据分析。

解设电阻R上的电压为ur,其参考方向为上正下负,且与电流iR参考方向关联,如图4.7所示。

由于集成运算放大器工作在线性区,故S'5°。

因心即,故电阻R!

上无电压降,于是得:

由上式可知输出电流io与负载电阻Rl无关,所以改变Rl对io没有影响。

4.6如图4.8所示也是一种电压-电流变换电路,试求输出电流io与输入电压ui的关系,并说明改变负载电阻Rl对io有无影响。

分析本题电路由一个同相输入的集成运算放大器和一个场效应管组成,由于电阻R引入了

电流串联负反馈,所以集成运算放大器工作在线性区,可以应用“虚断”和“虚短”两条分析依据分析。

解设电阻R上的电压Ur参考方向如图4.9所示,且与电流iR参考方向关联。

由于集成运

算放大器工作在线性区,故a-,匚仃U。

因.°,故电阻Rl上无电压降,于是得:

由于场效应管栅极电流为0,所以:

4.7如图4.10所示为一恒流电路,试求输出电流io与输入电压U的关系。

分析本题电路也是一个同相输入电路,并引入了负反馈,所以集成运算放大器工作在线性区,可以应用“虚断”和“虚短”两条分析依据分析。

解设电阻R上的电压ur参考方向如图4.11所示,且与电流iR参考方向关联。

由于集成运算放大器工作在线性区,故J=J,L°,可得:

4.8求如图4.12所示电路中uo与ui的关系。

分析本题电路在负反馈回路中引入了由Rfi、Rf2和Rf3组成的T型电阻网络来代替反相输

入比例运算电路中的反馈电阻Rf,其目的是使电路在增大输入电阻的同时,也能满足一定

放大倍数的要求,同样可以应用“虚断”和“虚短”这两条分析依据分析计算。

解设电阻Ri、Rfi、Rf2、Rf3中电流ii、ifi、if2、if3的参考方向如图4.13所示,连接Rfi、Rf2、

Rf3的节点为A,根据运放工作在线性区的两条分析依据,即a

,故电阻Ri上无电压降,于是得:

h=%==

于是得:

所以:

整理,得:

4.9电路及Uii、Ui2的波形如图4.14所示,试对应画出uo的波形。

图4.14习题4.9的图

分析本题电路是加法运算电路,可根据加法运算电路原理分段相加。

运用这种方法可将一些常规的波形变换为所需要的波形。

解根据加法运算电路原理可得:

“{討哙J■(舲"黑J血“

当十=°时,Uii由o跳变到3V,Ui2由-3V跳变到0,故Uo由3V跳变到-3V。

当时,Uii由3V跳变到0,Ui2由-3V跳变到0,故

在20注期间,忙弋2泄卜申4哄-3卜书",一条直线。

在曰・7期间,咛电2詐-3)“J,一条直线。

当十■妇时,重复十=°时刻的状态。

以此类推,可画出Uo波形如图4.15所示。

图4.15习题4.9解答用图

4.10电路及Ui1、Ui2的波形如图4.16所示,试对应画出uo的波形。

图4.16习题4.10的图

分析本题电路是减法运算电路,可根据减法运算电路原理分段相加。

运用这种方法也可将

一些常规的波形变换为所需要的波形。

解根据减法运算电路原理可得:

=誥(叱_瞿和)=距口»n)

时,51由0跳变到3V,Ui2由3V跳变到0,故uo由6V跳变到-6V。

当'"时,Ui1由3V跳变到0,Ui2由3V跳变到0,故%"。

在JUf期间,-3卜加7-刃,一条直线。

在t叫*期间,召我%」卜2(0-?

-。

卜―,一条直线。

当'乙时,重复r=°时刻的状态。

以此类推,可画出Uo波形如图4.17所示。

图4.17习题4.10解答用图

4.11求如图4.18所示电路中Uo与Ui的关系。

图4.18习题4.11的图

分析在分析计算多级运算放大电路时,重要的是找出各级之间的相互关系。

首先分析第一

级输出电压与输入电压的关系,再分析第二级输出电压与输入电压的关系,逐级类推,最后

确定整个电路的输出电压与输入电压之间的关系。

本题电路是两级反相输入比例运算电路,

第二级的输入电压Ui2就是第一级的输出电压Uo1,整个电路的输出电压%=比心_Hnl。

解第一级的输出电压为:

Hnl..■■

第二级的输出电压为:

隅吨0

叫1=»«!

=5«01=2^

墨2

所以:

%7亞-ttnl-25«j

4.12求如图4.19所示电路中Uo与Ui的关系。

图4.19习题4.12的图

分析本题电路第一级为电压跟随器,第二级为同相输入比例运算电路,整个电路的输出电

解第一级的输出电压为:

起nl=冷

第二级的输出电压为:

4.13按下列运算关系设计运算电路,并计算各电阻的阻值。

(1)%"纠(已知斗"叭Q)。

(2)fS(已知%"闾kQ)o

(3)叫占L匕叱%(已知貝1WkQ)o

(4)"'%W(已知尽1临kQ)。

(5)4・山\!

吶(已知C=l^F)o

分析运算放大电路的设计,首先应根据已知的运算关系式确定待设计电路的性质,其次再计算满足该关系式的电路元件参数。

4.20

(1)根据运算关系式胆口二・加1,可知待设计电路为反相输入比例运算电路,如图

(a)所示。

所以:

(kQ)

平衡电阻为:

(b)

(2)根据运算关系式町%,可知待设计电路为同相输入比例运算电路,如图4.20所示。

所以:

^=^=100=100

(kQ)

平衡电阻为:

(3)根据运算关系式叫—九■!

—灯口―%,可知待设计电路为反相输入加法运算电路,如图4.20(c)所示。

所以:

=—al=—x]_o0i=^(i

(kQ)

JRj=—=—xlOQ=20

(kQ)

平衡电阻为:

(4)根据运算关系式叫如H沁,可知待设计电路为减法运算电路,如图4.20(d)所

示。

所以:

5(kQ)

-2

(kQ)

取:

则:

□ftj=—=—jcIOO=5©

(kQ)

(5)根据运算关系式怜M的桃W叭丽,可知待设计电路为反相输入积分加法运算电

与关系式%-小曲寸吒屮对照可得:

 

JT,=—==200

(kQ)

平衡电阻为:

盼腳&■743(kQ)

图4.20习题4.13解答用图

在设计过程中,有时并不是一种运算关系式仅有一种电路,有的关系式可用不同形式的电路

来实现。

4.14求如图4.21所示电路中uo与Uii、ui2的关系。

图4.21习题4.14的图

分析本题两级电路第一级为两个电压跟随器,第二级为加法运算电路。

解第一级两个电压跟随器的输出电压为:

址irt=咤1

第二级的输出电压为:

4A

Hnl+_

JI

4.15求如图4.22所示电路中uo与Ui1、ui2的关系。

10kQ

图4.22习题4.15的图

分析本题两级电路第一级为同相输入比例运算电路,第二级为减法运算电路。

解第一级的输出电压为:

第二级的输出电压为:

+=-3aniHii+-^0哗i)

4.16求如图4.23所示电路中uo与Ui1、ui2的关系。

分析本题两级电路第一级为两个电压跟随器,第二级为一个电压跟随器,求第二级电压跟随器输入电压最简便的方法是利用叠加定理。

解第一级的输出电压为:

利用叠加定理,得第二级的输出电压为:

图4.25习题4.18的图

分析本题两级电路第一级为反相输入比例运算电路组成,第二级为积分电路。

计算时注意集成运算放大器的输出电压不会超过最大输出电压Uom。

解第一级的输出电压为:

(V)

第二级的输出电压为:

l(»xl03x10x10^&

心Is时电路的输出电压U0。

un-6xl-6(V)

/=2s时电路的输出电压UO。

tfn=fijc2=12(v)

/=3S时电路的输出电压Uo。

叫=^x3=18(v)

这时输出电压Uo已超过运算放大器的最大输出电压Uom,这是不可能的。

实际上uo等于Uom

时运算放大器已经工作在饱和状态,此后Uo不会再增大,所以,3s时电路的输出电压

uo仍为12V。

4.19在自动控制系统中需要有调节器(或称校正电路),以保证系统的稳定性和控制的精

度。

如图4.26所示的电路为比例一积分调节器(简称PI调节器),试求PI调节器的Uo与Ui的关系式。

分析本题电路引入了电压并联负反馈,集成运算放大器工作在线性区,可应用“虚短”和

“虚断”两条分析依据分析计算。

解设电流ii、if的参考方向如图4.27所示,且电容C两端电压uc与流过的电流if参考方向关联,根据运放工作在线性区的两条分析依据,即址-叫,—可得:

所以:

4.20如图4.28所示的电路为比例一微分调节器(简称PD调节器),也用于控制系统中,

使调节过程起加速作用。

试求PD调节器的Uo与ui的关系式。

分析本题电路也引入了电压并联负反馈,集成运算放大器工作在线性区,可应用“虚短”和“虚断”两条分析依据分析计算。

解设电流ii、if的参考方向如图4.29所示,且电容C两端电压uc与流过的电流if参考方向

关联,根据运放工作在线性区的两条分析依据,即起-〜,匚可得:

所以:

■n=f矗--售+蜃。

菩]

 

图4.28习题4.20的图图4.29习题4.20解答用图

4.21求如图4.30(a)、(b)所示有源滤波电路的频率特性,说明两个滤波电路各属于何种类型,并画出幅频特性曲线。

图4.30习题4.21的图

分析本题两个电路都引入了电压并联负反馈,集成运算放大器工作在线性区,可应用“虚短”和“虚断”两条分析依据分析计算。

解设输入电压Ui为正弦信号,则电流电压均可用相量表示。

由于集成运算放大器工作在线性区,故—,丄7“。

对图4.30(a)所示电路,有:

U=17^=0

―1•+

所以,电路的电压放大倍数为:

品=

式中为截止角频率。

电压放大倍数的幅频特性为:

血=丄生

当S时,逅R

去=?

L=a^

当jg=m时盘

幅频特性曲线如图4.31(a)所示。

可见如图4.30(a)所示电路具有高通滤波特性,即用》叫

的信号可以通过,而凰5的信号被阻止,所以如图4.30(a)所示电路是一个高通滤波电

路。

对图4.30(b)所示电路,有:

U=U^=O

―1•+

所以,电路的电压放大倍数为:

 

式中•为截止角频率。

电压放大倍数的幅频特性为:

当A=o时,Af=KJ

幅频特性曲线如图4.31(b)所示。

可见如图4.30(b)所示电路具有全通滤波特性,即在

0~g范围内所有频率的信号均可以通过,所以如图4.30(b)所示电路是一个全通滤波电路。

(a)(b)

图4.31习题4.21解答用图

4.22在如图4.32所示的各电路中,运算放大器的"z'“V,稳压管的稳定电压Uz为6V,正向导通电压Ud为0.7V,试画出各电路的电压传输特性曲线。

分析电压传输特性曲线就是输出电压Uo与输入电压ui的关系特性曲线。

本题两个电路都是电压比较器,集成运算放大器都处于开环状态,因此都工作在非线性区。

在没有限幅电路的

an=+^a<

情况下,工作在非线性区的集成运算放大器的分析依据是:

时叫.0,其中tt*=a-为转折点。

当有限幅电路时,电压比较器

的输出电压值由限幅电路确定。

图4.32习题4.22的图

解对图4.32(a)所示电路,比-V,—=筍,故当输入电压叫V匕v时,输出电压

叫,12V;当输入电压T;>-V时,输出电压叫12V。

电压传输特性如

图4.33(a)所示。

对图4.32(b)所示电路,由于哉#=叭,呈-11V,故当叫、-V时,集成运算放大器的输出电压为+12V,稳压管处于反向击穿状态,直口丄:

16V;当幻*、V时,集成运算放大

器的输出电压为-12V,稳压管正向导通,叫V。

电压传输特性如图4.33(b)所示。

5

*

13

卞帀——仲

1^11

CO

图4.33习题4.22解答用图

4.23在如图4.34(a)所示的电路中,运算放大器的V,双向稳压管的稳定电压

Uz为6V,参考电压Ur为2V,已知输入电压ui的波形如图4.34(b)所示,试对应画出输出电压Uo的波形及电路的电压传输特性曲线。

而输出电压的幅值则取决于

图4.34习题4.23的图

分析电压比较器可将其他波形的交流电压变换为矩形波输出,限幅电路。

解由于叫5,起-=%,故当叫Y2V时,集成运算放大器的输出电压为+12V,经

限幅电路限幅之后,输出电压査口茴v;当叫A2V时,集成运算放大器的输出电压

为-12V,经限幅电路限幅之后,输出电压%"V。

输入电压Ui和输出电压uo的波

4.35(b)所示。

形如图4.35(a)所示,电路的电压传输特性曲线如图

(a)输入电压ui和输出电压uo的波形(b)电压传输特性曲线

图4.35习题4.23解答用图

4.24如图4.36所示是监控报警装置,如需对某一参数(如温度、压力等)进行监控时,可由传感器取得监控信号ui,Ur是参考电压。

当ui超过正常值时,报警灯亮,试说明电路的工作原理及二极管VD和电阻R3的作用。

图4.36习题4.24的图

分析报警指示灯的亮灭取决于晶体管是否导通,而晶体管是否导通则取决于电压比较器的

输出电压。

解由于电压比较器的"十f,U-=a>,故当叮5.时,集成运算放大器正向饱和,其输

出电压为叫叭人袒,二极管截止,晶体管的叫说Eg,晶体管因正向偏置而导通,报

警指示灯亮,说明监控信号ui已超过正常值,此时电阻R3起限制晶体管基极电流、保护晶

体管的作用。

当巧U时,集成运算放大器反向饱和,其输出电压为叫和匚馳,二极管导

通,晶体管的''坷:

7V,晶体管因反向偏置而截止,报警指示灯熄灭,说明监控信号u

仍在正常值范围之内,此时二极管VD起限制晶体管反向偏置电压、保护晶体管的作用,电

阻R3起限制二极管电流、保护二极管和集成运算放大器输出端的作用。

4.25电路如图4.37所示,在正弦波振荡器的输出端接一个电压比较器。

问应将a、b、c、d

四点应如何连接,正弦波振荡器才能产生正弦波振荡?

并画出正弦波振荡器输出U°i和电压

比较器输出Uo2的波形。

若已知°=卩F,用Q,旳20kQ,求正弦波振荡频率并

确定反馈电阻Rf的值。

分析一个电路能否产生正弦波振荡,其首要条件是电路是否引入了正反馈,即电路是否满足自激振荡的相位条件。

解正反馈才能满足自激振荡的相位条件,所以应将a接c、b接d才能产生正弦波振荡。

振荡频率为:

$0==T-=lfi

MC(kHz)

反馈电阻Rf的值为:

>2^=2x20=40(kQ)

正弦波振荡器输出电压Uoi和电压比较器输出电压uo2的波形如图4.38所示。

图4.38习题4.25解答用图

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2