多孔磨耗层外文翻译.docx

上传人:b****1 文档编号:2401795 上传时间:2023-05-03 格式:DOCX 页数:19 大小:33.23KB
下载 相关 举报
多孔磨耗层外文翻译.docx_第1页
第1页 / 共19页
多孔磨耗层外文翻译.docx_第2页
第2页 / 共19页
多孔磨耗层外文翻译.docx_第3页
第3页 / 共19页
多孔磨耗层外文翻译.docx_第4页
第4页 / 共19页
多孔磨耗层外文翻译.docx_第5页
第5页 / 共19页
多孔磨耗层外文翻译.docx_第6页
第6页 / 共19页
多孔磨耗层外文翻译.docx_第7页
第7页 / 共19页
多孔磨耗层外文翻译.docx_第8页
第8页 / 共19页
多孔磨耗层外文翻译.docx_第9页
第9页 / 共19页
多孔磨耗层外文翻译.docx_第10页
第10页 / 共19页
多孔磨耗层外文翻译.docx_第11页
第11页 / 共19页
多孔磨耗层外文翻译.docx_第12页
第12页 / 共19页
多孔磨耗层外文翻译.docx_第13页
第13页 / 共19页
多孔磨耗层外文翻译.docx_第14页
第14页 / 共19页
多孔磨耗层外文翻译.docx_第15页
第15页 / 共19页
多孔磨耗层外文翻译.docx_第16页
第16页 / 共19页
多孔磨耗层外文翻译.docx_第17页
第17页 / 共19页
多孔磨耗层外文翻译.docx_第18页
第18页 / 共19页
多孔磨耗层外文翻译.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

多孔磨耗层外文翻译.docx

《多孔磨耗层外文翻译.docx》由会员分享,可在线阅读,更多相关《多孔磨耗层外文翻译.docx(19页珍藏版)》请在冰点文库上搜索。

多孔磨耗层外文翻译.docx

多孔磨耗层外文翻译

Characterizationofporousfrictioncoursemixesfordifferent

Marshallcompactionefforts

DepartmentofCviliEngnieernig,NatoinalInsttiuteofTechnologyKarnataka,Surathka,lMangaolre575025,India

 

ABSTRACT

Porousfrictioncourses(PFCs)aremainlyrecommendedassurfacedrainagelayersonhigh-speedroadcorridorsandrunwaypavements.PermeabilityandsoundattenuationcharacteristicsareconsideredtobetheindicesforperformanceassessmentofPFCs.OneofthereasonsforthelossofpermeabilityinPFCsisdensificationunderheavytraffic.But,resistancetoravellingtoo,isofmainconcerninthecaseofunder-compactedPFCs.ThispapersummarisesthedetailsoflaboratoryinvestigationonthecharacterizationofPFCmixescorrespondingtofourdifferentgradationsandtwobindercontents,forthreelevelsoftheMarshallcompaction.ThefindingsoftheinvestigationsuggestthattheselectionofthecompactionlevelforPFCmixdesignshouldbebasedonthedesigntrafficlevel,andthegradationselected.

2009ElsevierLtd.Allrightsreserved.

Keywords:

PorousfrictioncoursePorousasphaltMarshallcompactionAirvoidsVoidsincoarseaggregatePermeabilityMoisturesusceptibility

Abrasionloss

1.Introduction

Porousfrictioncourses(PFCs)aretypicalopen-gradedasphalticmixes,composedofrelativelyuniformly-gradedaggregateandasphaltcementormodifiedbinders,andaremainlyusedtoserveasdrainagelayers,eitheratthepavementsurfaceorwithinthepavementstructure[1].Pavementssurfacedwithopen-gradedasphalticmixeswerefoundtoimprovewetweatherskid-resistance,minimizehydroplaning,reducesplashandspray,improvenightvisibilityduringwetweatherconditions,andreducetraffictyrenoise[2,3].IncountriesliketheUnitedStatesofAmerica,Japan,theUnitedKingdom,Malaysia,Australia,NewZealand,andSouthAfrica,open-gradedmixesareinuseassurfacelayersoverhigh-speedandheavilytraffickedhighwaypavements[2–8].Thesearealsorecommendedforsurfacingrunwaypavements[9-10].Manyagenciesaroundtheworldusedifferentterminologiesforopen-gradedmixes,andspecificationsthatareslightlydifferent.Thevariousterminologiesusedincludeopen-gradedasphalt(OGA),porousasphalt(PA),open-gradedfrictioncourse(OGFC),andporousfrictioncourse(PFC).

.1.1Background

ThehighairvoidscontentinPFCscontributetowardspavementsurfacedrainageandinattainingnoisereduction.But,acceleratedasphalt-filmaging,maysubsequentlyleadtolossofcohesioninthemastic,consequentlypooradhesionbetweenthemasticandaggregateresultsinravelling.Experienceswiththeuseofopen-gradedmixesintheUSAindicatedthatravellingwasoneofthemajorissuestobetackled[11].Thus,structuraldurabilityofPFCsneedstobeensuredbasedontheresistancetoravelling[12].SomeoftheexperienceswithPFCsinJapan,thepoorperformancewasrelatedtothelackofcompaction,orcompactionatlowertemper-aturesthanthespecified[6].PermeabilityandsoundattenuationcharacteristicsarethemainmeasuresofperformancelifeofPFCs[2].StudiesperformedontestsectionsinDenmark,indicatedthatdeterioratedmasticmaterialscloggedthelarge-sizedairvoidsinPFCs,whichledtotheformationofhigherpercentageofsmall-sizedvoids[12].Clog-gingwasfoundtobemorepronouncedonolderpavement,especiallyalongthewheelpath,andalsointheemergencylanes[13].Although,PFCsarecomposedofrelativelyuniformly-gradedaggregate[1],theuseofthickerPFCsmayundergosecondarydensificationduringservice,resultinginlossofpermeability.Thus,thelossofpermeabilitycanbedirectlyrelatedtocloggingofvoidsduetointernalandexternalmaterials,anddensificationundertraffic[2].

Anoptimaldesignmixshouldensurehighairvoidscontentandgoodresistancetoravelling.ProcedureformixdesignofPFCsrecommendedbyvariousagenciesincludetheevaluationofdrain-downlossesinloosehotmixes,airvoidscontent,stone-on-stonecontactcondition,permeability,andtheabrasionresistanceusingtheCantabroabrasiontestmethod[4,7,8,15].Oneofthemajordifferencesobservedinthespecificationsbyvariousagenciesisthatoftheconsiderationoftrafficvolumeintheoptimummixselectioncriteria.Theminimumairvoidscontentandthemaximumabrasionlossspecifiedbysomeoftheagenciesweredependentonthetrafficvolume[4,7,8],whereas,thisdependencywasnotconsideredbymanyagenciesintheUSA[2,10,15,16].ThelevelofMarshallcompactionsuggestedbymanyagencieswerefoundtobe50blowsperface,irrespectiveofthetrafficvolume.Inaddition,intherecentpastmanyresearchersadoptedthesameleveloftheMarshallcompactionforthedesignofPFCmixes[17–20].However,someoftheresearchersadoptedorsuggestedthelowerlevelsoftheMarshallcompaction,forcharacterizingthePFCmixes[21–24].

1.2.Objectiveandscope

ThemainobjectiveofthisinvestigationwastocharacterizethePFCmixesforthreelevelsoftheMarshallcompaction.Thecompactionlevelsinvestigatedinclude35,50,and75blowsappliedoneachendofthespecimen.TheeffectofeachcompactionlevelwasstudiedoneightdifferentPFCmixes,whichcorrespondedtofourdifferentaggregategradations(G),andtwobindercontents(BC)of4.5and5.0%bymassoftotalmix,usingtheneatbitumenof85–100penetrationgrade.Theselectionofgradation,bindertype,andbindercontentwerebasedonthepreviousstudiesperformedonsimilarmixes[25,26].Fig.1showsthedetailsofthefouraggregategradationsinvestigated.Table1providesdetailsofthecodingmethodadoptedfordesignatingthemixesforvariouscompactionlevelsandmixcompositions.

2.Specimenpreparationandtestplan

Straight-runbitumenandcrushedstoneaggregatesarethemajorconstituentsofPFCmixes.Thestraight-runpavinggradebitumenusedinthepresentinvestigationwassuppliedbyMangaloreRefineryandPetrochemicalsLimited(MRPL),Manga-

lore.Crushedgranitestoneaggregatesobtainedfromlocalstone-crushingplantswereusedinthisstudy.Table2showssomeofthephysicalpropertiesofbitumenandaggregatestestedinaccordancewiththerequirementsoftheASTMD946[27]andASTMD7064[15],respectively.OrdinaryPortlandCement(OPC)wasusedasapartofthemineralfiller,constituting2%bymassoftotalaggregatesweighing1000g.

TheprocedureadoptedforpreparationofthePFCspecimenswasquitethesameasthatadoptedfordensegradedasphalt,assuggestedinAsphaltInstituteManualSeries-2[28].Thepropertiesofcompactedmixesinvestigatedincludebulkspecificgravity(Gmb),airvoidscontent(Va),stone-on-stonecontactcondition,per-

meability(K),moisturesusceptibility,andunagedabrasionloss.ThesepropertieswereevaluatedinaccordancewiththeguidelinesoftheASTMD7064[15].Table3providesdetailsonthetestsperformedforvariousexperimentalmixes.Threeobservationsweremadeoneachexperimentalmix.

3.CharacterizationofPFCmixes

3.1.Bulkspecificgravityofcompactedmix

Thetestsforbulkspecificgravityofcompactedmixes(Gmb)wereperformedon24mixesasdescribedinTable3,withthreereplicatesforeachmix.TheGmbofeachcompactedmixwasdeterminedusingthegeometricmeasurementsofdiameter,height,andthemassofthespecimeninair,inaccordancewithASTMD7064[15].TheindividualandmeanGmbvalueswerefoundtobeintherangeof1.935–2.249,and1.984–2.226,respectively,asshowninFig.2.Itisevidentthatanincreaseinthecompactioneffortwillleadtodensificationofthemix,resultinginhigherdensities.Further,itisevidentfromthe95%confidenceintervalsthatthereisnosignificantdifferencebetweenthemeanGmbvaluesamongthemixeswithbindercontentsof4.5%and5.0%whencompared,foraparticulargradationandcompactionlevel.ThemixeswithgradationsG1andG4exhibitedhigherandlowerGmbvalues,respectively,especiallysinceG4comprisedofcoarseraggregates.ThemeanGmbvaluesforthemixeswithgradationsG2andG3areapproximatelythesame,astheminordifferencesingradationshavenotaffectedtheGmbvaluessignificantly.

3.2.Airvoids

Theairvoids(Va)contentinacompactedmixisrelatedtotheGmbandthetheoreticalmaximumdensity(Gmm)oftheuncompactedmix,determinedinaccordancewiththeASTMD2041[30].TheincreaseinthecompactioneffortresultsinhigherGmb,resultinginadecreaseinVa.

Fig.3showstheindividualplotofVaforeachmix.ItalsoindicatesthemeanVaoftheindividualmixestested,andthe95%confidenceintervalforthemean.ThelineconnectingthemeanVashowsthetrendinvariationsoftheVawiththecompactioneffort.TheindividualandmeanVavalueswerefoundtobeintherangeof10–22%,and10–20%,respectively.AsperthestandardrequirementsofASTMD7064[15],PFCmixesshouldhaveaminimumVaof18%.ThemeanVacorrespondingtothemixesM19(G4-35-4.5),M20(G4-35-5.0),andM21(G4-50-4.5)satisfiedthisrequirement,while,themixesM7(G2-35-4.5),M8(G2-35-5.0),M9

(G2-50-4.5),M13(G3-35-4.5),andM15(G3-50-4.5)seemtosatisfythisrequirementataconfidencelevelof95%.However,inthemixestestedfor75blows,theindividual,mean,andupperlimitsof95%confidenceintervalofmeanVafailedtosatisfytheminimumVarequirement.AllmixescorrespondingtothegradationG4,i.e.,M19–M24werefoundtohavemeanVaofmorethan15%.ThereductioninthemeanVaduetochangeinthecompactionlevelfrom50blowsto75blowswasfoundtobeintherangeof0.6–3.2%.Similarly,changeincompactionlevelfrom50to35

blows,resultedinanincreaseinmeanVaintherangeof0.2–2.9%.

3.2.Verificationofstone-on-stonecontactcondition

Thepresenceofstone-on-stonecontactconditioninthecoarseaggregateskeletonisconsideredtobemust,forthebestperformanceofPFC[15].InthecompactedPFCmix,stone-on

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2